The experimental study I am presenting today was inspired by discussions I had with Peter about ten years ago

QMBC 2023

Temperature and density conditions for alpha clustering in alpha-conjugate nuclei

⁴⁰Ca+¹²C, 25 AMeV with CHIMERA multidetector (LNS Catania)

B. Borderie^a, Ad. R. Raduta^{a,b}, G. Ademard^a, M. F. Rivet^a, E. De Filippo^c, E. Geraci^{c,d,e}, N. Le Neindre^{a,f}, R. Alba^g, F. Amorini^g, G. Cardella^c, M. Chatterjee^h, D. Guinetⁱ, P. Lautesseⁱ, E. La Guidara^{c,j}, G. Lanzalone^{g,k}, G. Lanzano^{c,1}, I. Lombardo^{g,d}, O. Lopez^f, C. Maiolino^g, A. Pagano^c, S. Pirrone^c, G. Politi^{c,d}, F. Porto^{g,d}, F. Rizzo^{g,d}, P. Russotto^{g,d}, J.P. Wieleczko¹ ^aInstitut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud 11, Orsay, France ^bNational Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania ^cINFN, Sezione di Catania, Italy ^dDipartimento di Fisica e Astronomia, Università di Catania, Italy ^eINFN, Sezione di Bologna and Dipartimento di Fisica, Università di Bologna, Italy ^fLPC, CNRS/IN2P3, Ensicaen, Université de Caen, Caen, France ⁹INFN, Laboratori Nazionali del Sud, Catania, Italy ^hSaha Institute of Nuclear Physics, Kolkata, India ⁱInstitut de Physique Nucléaire, CNRS/IN2P3, Université Claude Bernard Lyon 1, Villeurbanne, France ^jCSFNSM, Catania, Italy ^kUniversità di Enna "Kore", Enna, Italy ¹GANIL, (DSM-CEA/CNRS/IN2P3), Caen, France

QMBC 2023

Outline of the talk

Motivations: theoretical calculations which predict that at low density alpha-conjugate nuclei spontaneously cluster into alpha-particles

Experimental strategy and experiment - How to isolate alpha-conjugate sources with selections

Results i) comparisons to simulations (seq. versus simul. emission) to sign a clustering ii) extract T and density conditions

Conclusion

Constrained Hartree-Fock-Bogoliubov approach using Gogny D15 int. ¹⁶O, ²⁰Ne ... Constrained self-consistent relativistic Hartree-Bogoliubov (RHB) model based on DD-ME2 effective interaction both by imposing radial deformation

FIG. 3: (Color online) Self-consistent intrinsic nucleon density of 16 O for a radius constrained to 3.32 fm (a) and 3.34 fm (b).

FIG. 5 (color online). Equation of state for a choice of selfconjugate nuclei (EOS-A) as a function of average density scaled by the one at equilibrium; see text for detailed definition.

M. Girod and P. Schuck, PRL 111 (2013) 132503 J.-P. Ebran, E. Khan et al., PRC 89 031303(R) 2014

QMBC 2023

Experimental strategy

We search for a possible simultaneous emission of alpha-particles from excited expanding alpha-conjugate nuclei

intermediate energy HI reactions to possibly produce
some hot expanding projectile fragmentation products
→ ⁴⁰Ca + ¹²C at 25 MeV per nucleon
associated with high detection granularity (CHIMERA) to precisely reconstruct velocity vectors

Well known that around 25-30 AMeV incident energy fragmentation of ²⁰Ne projectiles is dominated by alpha-conjugate fragmentation products ¹⁶O, ¹²C... M. Morjean et al., NPA 438 1985 547

CHIMERA experiment

1192 telescopes 94% of 4π Si \approx 200-300 µm CsI(Tl) from 12 to 3 cm beam intensity: 10⁷ ions/s thin target $320\mu g/cm^2$ to avoid random coinc. angular range used: Θ =1-62° => 816 telescopes

Identification in Z and A for the energy range and reaction products of interest

alpha-particles of interest loose the major part of their energy in CsI(Tl): dedicated energy calib. from time of flight - energy resolution 1-2.5%

QMBC 2023

Overview of event reconstruction/identification

grazing angle = 1.11° - ring 1I (1.0° - 1.8°) suppressed to eliminate elas./ quasi elas.

Selected mechanism: Proj. Frag. (PF) => Z_{tot}=20 Selected events?

³²S ≈ 26 AMeV - surface friction model + alpha substructure of the projectile + random force (elastic a - a scattering cross section) H. Fuchs and K. Mohring, Rep. on Prog. in Physics 57 (1994) n°3

For ⁴⁰Ca=>1 excit. PF which deexcites into alphas (M_a =4,5,6,7) + a single weakly excited frag.(Z_{frag} =20-2× M_a)

Laboratoire de Physique des 2 Infinis

Selected mechanism - Proj. Frag. (PF) Z_{tot}=20 Selected events: (M_{alpha}=4,5,6,7) + one frag.(Z_{frag}=20-2×M_{alpha})

Alpha energy spectrum in the Na c.m. M_{alpha}=5 Maxwellian distribution Presence of preequil.

The question is: does M_{alpha} come exclusively from a single set of excited a-conjugate nuclei? called also Na sources in what follows

Additional selections

Some a-particles from preequil. Some a-particles from ¹²C*, ¹⁶O* (unbound states) either fragments or emitted from Na systems => about 10% of events removed see B.B. et al., PLB 755 (2016) 475, J. Phys. Conf. Ser. 863 (2017) 012054

⇒ After selections the answer is yes Different M_{alpha} come exclusively from sets of excited a-conjugate nuclei Next step: deexcitation mode ? <E*>? T? density ?

Deexcitation mode Are a-particles emitted sequentially or simultaneously from Na sources ?

Answer by comparing to simulations

Simulations with exp.velocity dist., exp. E* dist., and ang.moment. dist. as inputs

Results of simulations

filtered by the multidetector replica including detection and identification details - detection efficiency (46.7 to 27.2% when Ma varies from 4 to 7)

Are a-particles emitted sequentially or simultaneously from Na sources ?

Sequential emission: GEMINI++ code

- Hauser-Feschbach formalism for evap. of particles (Z<5)
- n, p, t, ³He, a-particle, ⁶He, ⁶⁻⁸Li and ⁷⁻¹⁰Be
- Transition state formalism for fragments (Z>4)
- Best agreement with data is obtained with gaussian distributions (RMS=1.5ħ) for spin inputs

Simultaneous emission (clustering) mimics a situation in which a clusters are early formed when the Na system is expanding (theoretical predictions) due to thermal pressure.

i) Na systems split into N a

ii) the remaining available energy (E*+Q) is randomly shared among the N a-particles such as to conserve energy and linear momentum

J.A. Lopez and J. Randrup, NPA 491 (1989) 477

Similar calculated energy spectra are obtained with simulations containing an intermediate freeze-out volume step where a are formed and then propagated in their mutual Coulomb field => density information

QMBC 2023

T and density from energy spectra

Information deduced from Maxwellian fit with volume/breakup pre-exponential factor

A. Goldhaber, PRC 17,2243 (1978)

=>
$$dN/dE = N_0 (E - C_c)^{1/2} exp[-(E - C_c)/T]$$

Coulomb correction C_c

Most probable value of $dN/dE = T/2 + C_c$

Comparison with simultaneous simulation with Freeze-Out step to derive F.O. volume values and consequently density

Excitation energy and Energy spectra

B.B. et al., Symmetry 13, 1562 (2021)

Laboratoire de Physique des 2 infinis

T and density from energy spectra

Να	< E* > (MeV)	T (MeV)	Cc (MeV)	ρ/ρο
160*	52.4	6.15 (0.03)	0.33 (0.03)	0.37 (0.04)
20Ne*	67.3	6.22 (0.05)	0.45 (0.05)	0.36 (0.04)
24Mg*	83.5	5.92 (0.07)	0.40 (0.07)	0.34 (0.06)
285i*	98.5	5.40 (0.12)	0.37 (0.16)	0.34 (0.11)

=> < E* >≈ 3.3-3.5 AMeV T≈ 5.5-6.0 MeV density ≈ 1/3 po

B.B. et al. Symmetry 13, 1562 (2021)

Conclusion

The reaction ⁴⁰Ca+¹²C at 25 MeV/nucleon was used to produce and carefully select specific classes of events from which excited alpha-conjugate nuclei (Na sources) can be unambiguously identified.

When compared with simulations (sequential decay and simultaneous decay) evidence in favour of simultaneous emission (alpha-particle clustering) from expanding alpha-conjugate nuclei is deduced

Their E* distributions are derived with mean values around 3.5 MeV per nucleon.

T around 5.5-6.0MeV and density around 1/3 saturation density were extracted from energy spectra. Density is in qualitative agreement with self-consistent mean field calculations at zero temperatures.

Finite temperature calculations would be welcome for a more valid comparison with the data

N_{alpha} sources - excitation energy versus temperature from surface/sequential emission dN/dE = N₀ (E-B_c)/T exp[-(E-B_c)/T]

- NaT (MeV)Bc (MeV)45.18 (0.03)-1.19 (0.06)55.14 (0.05)-0.92 (0.11)64.94 (0.07)-1.05 (0.16)74.57 (0.11)-1.12 (0.30)
 - B_c is negative => no physical meaning

Multi-particle correlation function R. Charity et al., PRC 52 (1995) 3126

to identify and select nuclei/excited states

N alphas => determination of the alpha emitter reference frame => $E_{tot} = \sum E_k^i$

Correlation function: 1+R(E_{tot})=Ycorr(E_{tot})/Yuncorr(E_{tot}) Yuncorr(E_{tot}): product of single particle yields or mixing particles from different events

M. A. Lisa et al., PRC 44 (1991) 2865

QMBC 2023

% of events removed containing ¹²C*,¹⁶O* and ²⁰Ne* fragments which deexcite into a-particles or Na sources which deexcite via ¹²C*,¹⁶O* and ²⁰Ne*

Malpha	% supp. evts	tinal N of selected evts
4	1.6 (0.1)	12780
5	3.1 (0.3)	2623
6	3.6 (0.5)	1129
7	3.9 (1.1)	291 🚺

Laboratoire de Physiqu

Constrained Hartree-Fock-Bogoliubov approach ¹⁶O, ²⁰Ne ...

When A increases no more potential well at low density

FIG. 1 (color online). Total energy of ¹⁶O as a function of the radius scaled with respect to the one of the ground state $r_{g.s.}$. At $r/r_{g.s.} = \sim 1.8$, we see that a tetrahedron of four α particles is formed. No c.m. correction for individual α 's is applied here. The arrow indicates to which $r/r_{g.s.}$ value the α configuration corresponds.

FIG. 2 (color online). Same as Fig. 1 but for 24 Mg with six α 's. The shaded area only serves to show the three dimensionality of the α arrangement.

FIG. 3 (color online). Same as Fig. 1 but for 32 S with eight α 's. Also, configurations with four 8 Be and a 16 O surrounded by four α 's are shown.

M. Girod and P. Schuck, PRL 111 (2013) 132503

QMBC 2023

Quality of energy calibration ? Two-alpha correlation function

⁸Be E_{tot}=92 keV (Γ=5.6 eV)

Exp: 78 keV

Angle under which particle is emitted (finite granularity) Dir. of velocity vector: geometrical center of the module random angle in the geometrical extension of the module

QMBC 2023

Quality of energy calibration ? d-alpha correlations

⁶Li* $E_{ex} = E_{tot} - Q$ $E_{ex} = 2.186$ MeV

Exp: 2.21 MeV

