
 Valerio Olevano
in memory of Peter Schuck

dRPA, RPAx, SRPA, SCRPA, rRPA, ...:
tell me who you are

and I will tell your RPA
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Background

Statistics from
the literature.

● Is the Experiment a good benchmark?

● We need a benchmark for many-body theories & approx.

Ab initio GW on top of HF:
1980: Strinati, Mattausch, Hanke

Ab initio GW on top of DFT-LDA:
1985: Hybertsen, Louie
1986: Godby, Schlueter, Sham
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What about Relativistic Effects?

spin-orbit
split:

0.2 eV

first 3d
elements

Band gap:

0.2 eV
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correction to the gap?

in diamond:

0.4 eV
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Background
Adapted from van Schilfgaarde et al.:

● Is a comparison to the 
Experiment really meaningful?

Statistics from
the literature.



valerio.olevano@grenoble.cnrs.fr

6

Background
● We must check our many-body approaches 

against Exact Solution benchmarks!
● Getting rid of:

● mass corrections
● electron-phonon
● relativistic effects
● QED
● …

● which mask real many-body performances.
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Peter's proposal:
Lipkin model

● Only two levels (p=N degenerate) model.
● Exact solution available.
● My criticism: Too far from reality?
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He atom
● Exact solution (Hylleraas) available!                

for both ground and excited states.
● The simplest many-body system             

(although here many=2)
● Not a model, but even a Real System!
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Helium atom electronic structure

Independent-Particle
& EXP
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Hylleraas 1929 exact calculation

(for singlets → space-symmetric even function of t
                    → m = 0, 2, 4, … even)

Hylleraas coordinates
(3 scalars instead than 6)

Hylleraas functions

Ground state energy

Formal Solution to the He S.E.
in a Mathematical sense
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Hylleraas: a really EXACT solution 

EXP accuracy: 10-9 Ha

● Numerically exact solution fulfilling the Numerical Analysis mathematical definition 

● E0
He became for physicists the mathematicians π
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12Helium atom:
a triumph of Quantum Mechanics!

Pekeris PR (1958)

Ionisation Potential [cm-1]

non-relativistic
Hylleraas

reduced-mass
correction

mass-
polarization

relativistic
corrections

QED radiative
corrections THEORY EXPERIMENT

0.02
meV

Today Experiment for IP and E
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Outline
Comparing many-body approaches:
● HF and post-HF
● QMC
● DFT / TDDFT
● GW / BSE
● RPA and post-RPA
On the He atom exact solution for the:
● Ground state
● Quasiparticle charged excitations
● Optical neutral excitations
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RPA-ology:
Polarizability

RPA of nuclear physics

RPAx of cond-mat physics

TDHF of quantum chemistry

RPA of cond-mat physics

dRPA of nuclear physics

TDH of quantum chemistry

Li, Drummond, Schuck and Olevano (2019)
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He atom Ground State
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He atom Ground State

● Errors:
● HF: 1.1 eV = correlation energy
● DFT-LDA: 1.9 eV (error of LDA, not of DFT)
● DFT-GGA: 0.3 eV
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He atom and Exact-DFT
● Thank to the Hylleraas Exact solution, we have 

the Exact-DFT exchange-correlation!

Exact xc potential by inversion
the Kohn-Sham equation

Kohn-Sham equation

Umrigar, and Gonze (1994)
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He atom Ground State

● Good HF wavefunction, much 
better than expected! 

● but LDA and GGA 
wavefunctions also better than 
expected.

Umrigar, and Gonze (1994)
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EXACT vs exact: QMC

CASINO, Jastrow wavefunction,
CPU time: 32h (VMC) + 121h (DMC)

Li, Drummond, Schuck and Olevano (2019)

EXP accuracy: 10-9 Ha

However:
● He ground state nodeless wavefunction: no sign problem
● statistical error: not a numerical analysis exact solution
● DMC: DE / 10 → CPU * 100 → N & N accuracy: 1068h (age of the universe = 1014h) 
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EXACT vs exact: CI

d-aug-cc-pV5Z: non plus ultra!

Chemical Accuracy: 1 kcal/mol ~ 0.001 Ha

full-CI cc-pVTZ ORCA calculation

He

EXP accuracy: 10-9 Ha

Impossible to provide an error bar: not a Numerical Analysis exact solution
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Full-CI extrapolation

Li, Drummond, Schuck and Olevano (2019)
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He atom Ground State

Li, Drummond, Schuck and Olevano (2019)

towards SCRPA
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He atom Ground State

Li, Drummond, Schuck and Olevano (2019)
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He atom Charged Excitations
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Dynamical Screened Interaction W (in RPA approx.)

GW x1 , x2=iGx1 ,x2W x1 , x2

 x x1 , x2=iGx1 , x2v x1 , x2

Bare Coulombian Potential v

Hartree-Fock Self-Energy

GW Self-Energy

GW approximation to the Self-Energy
W r ,r ' ,=−1 r ,r ' , 1

∣r−r '∣

x2

v r ,r '

x1
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26He Quasiparticle states:
Ionisation Potential (IP)

Electron Affinity (EA)
QPstate [eV] HF GW Exact &EXP Exact-DFT DFT-LDA
1s (= - IP) -24.979 -24.696 -24.591 -24.591 -15.522
2s (= - EA) 0.590 0.580 >0 -4.291 0.331
2p 2.603 2.570 -3.445 1.841
3s 3.794 3.725 -1.755 2.692

● HF error on IP: 0.4 eV
● GW error on IP improves to: 0.1 eV
● The Exact-DFT HOMO KS eigenvalue provides the Exact IP.
● The EXP indicates a negative EA (unbound state):

● like in HF and GW and unlike Exact-DFT
● The Exact-DFT LUMO KS eigenvalue has nothing to see with the real EA!

He
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HOMO-LUMO gap

● Qualitatively correct HOMO-LUMO gap in both HF and GW
● Usual 30~40% DFT-LDA underestimation
● The Exact-DFT HOMO-LUMO gap has nothing to see with the 

real HOMO-LUMO gap!
● Useless to struggle searching for a DFT functional overperforming 

Exact-DFT on the HOMO-LUMO gap.

[eV] HF GW EXP Exact-DFT DFT-LDA
1s → 2s 25.569 25.276 >24.591 20.300 15.853



valerio.olevano@grenoble.cnrs.fr

28

He atom Neutral Excitations
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29He Neutral Excitations:
Exact-DFT KS energy-differences

● Exact-DFT Kohn-Sham 
energy-differences already 
in surprising good 
agreement with Exact 
neutral excitations!

● Exact-DFT KS energy-
differences reproduce the 
correct Rydberg series 
(highest lying states) → 
correct 1/r behaviour of 
the Exact-DFT exchange-
correlation potential!
Savin, Umrigar and Gonze (1998)
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DFT → TDDFT

same equation as 
RPA of nuclear physics

TDDFT kernel

xc-kernel
(must be approximated:
Adiabatic LDA)

TDHF (RPA) kernel

Coulomb interaction

Kohn-Sham energies
instead of Hartree-Fock
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31He Neutral Excitations:
Exact-DFT+TDLDA

● Exact-DFT+Exact-TDDFT 
must of course reproduce 
the Exact result.

● Approximated TDLDA on 
top of Exact-DFT 
introduces the right 
singlet-triplet exchange 
split (but thank to the v 
term) and performs 
reasonably well.

● TDLDA performance: 0.2 
eV error.

Petersilka, Gross and Burke (2000)
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32He Neutral Excitations:
DFT-LDA+TDLDA

● DFT-LDA+TDLDA 
strongly red-shifted

● Usually believed that 
the DFT-LDA+TDLDA 
spectrum is unbound, 
but it depends on how 
the IP is calculated:
● 1st KS energy?
● or DeltaSCF method?
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Bethe-Salpeter Equation

Bethe-Salpeter
Equation

Interaction Kernel

W = e-h Screened Interaction
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BSE kernel: approximations

Interaction Kernel

W = e-h Screened Interaction

1st approx: GW approx on the Self-Energy

2nd approx: neglect dW / dG

3rd approx: neglect frequency dependence in
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BSE vs TDHF=RPA(nuclear physics)

BSE

TDHF / RPA (nuclear physics)

● Screening is the GW+BSE 
way to correlations!
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GW quasiparticle energies
instead of Hartree-Fock
(we start from a ground state
which already contains some
correlation)

BSE vs TDHF=RPA(nuclear physics)
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37He Neutral Excitations:
GW+BSE

● HF and GW quasiparticle 
energy-differences, unlike 
Exact-DFT KS, lye in the 
continuum, as they must.

● In contrast to TDDFT, the 
BSE kernel has the hard 
task to bring excitations 5 
eV down from the 
continuum.

Li, Holzmann, Duchemin, Blase, Olevano (2017)
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GW+BSE vs nuclear RPA (TDHF)

● nuclear RPA (TDHF):    
twice the GW-BSE error!

● Self-interaction/screening 
problems not really affecting

● or for < 0.1 eV
● see also “GW on H atom”, 

Nelson, Bokes, Rinke, Godby 
2007)
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Hylleraas exact calculation

(for singlets → space-symmetric even function of t)

Hylleraas coordinates
(3 scalars instead than 6)

Hylleraas functions

N = 0 → → effective charge
(screening)

Hylleraas (1929)

● It is not that strange that 
screening capture most of 
correlations even in 2-
electrons He atom
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GW+BSE vs full CI

● Gaussian basis set convergence: 
d-aug-cc-pV5Z: non plus ultra! 
and only converged 2S, 2P, 3S

● 23S GW+BSE error: < 0.1 eV

Chemical Accuracy: 1 kcal/mol = 0.04 eV
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CI vs Exact-DFT+TDLDA
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Oscillator Strengths

● Oscillator Strengths are sensistive to both QP 
and Excitonic  wavefunctions (independently 
from energies).

● Surprising excellent agreement on the first 
dipole allowed Oscillator Strength!

Kono, Hattori (1984) Appel, Gross, Burke (2003)

Li, Holzmann, Duchemin, Blase, Olevano (2017)
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43He atom:
BSE Excitonic Wavefunction

Electron hole-averaged and 
hole electron-averaged
distribution proababilities

Excitonic Wavefunction
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Beyond RPA: SC-RPA
● Any approximation to the 2-particle G has a corresponding 

approximation on the self-energy, and so on the 1-particle G, 
the ground state etc.
Hartree approximation: Hartree-Fock:

Born approximation:
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Beyond RPA: SC-RPA

● Introducing correlations in the single-particle G 
(and in the ground-state) at the same level of 
the 2-particle G, self-consistently.
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Towards SC-RPA: r-RPA
● From HF uncorrelated 

0,1 integer occupation 
numbers, to fractional 
correlated ones:

Luttinger Theorem (checked up to 10-18) 

Catara et al. 1996, Rowe 1968,
correct to O(|Y|2):
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Towards SC-RPA: r-RPA
● Importance to include also 

corrections to QP energies 
beyond occupations only.

● Problem on the 1st excited 
state: importance of screening 
that should be contained in the 
neglected SC-RPA terms.

Li, Drummond, Schuck and Olevano (2019)
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Conclusions
● Many-body approaches should be benchmarked against safe exact 

solutions, possibly in real systems: He atom Hylleraas.
● On the ground-state energy: remarkable performances of DMC; SJ-

VMC shows its bias, but the Gaussian full-CI error is larger.
● The unphysical Exact-DFT KS energy differences have in fact nothing to 

see with the exact HOMO-LUMO (Band) gap, but are surprisingly close 
to Optical gaps and excitations.

● GW+BSE performs unexpectedly well on the He atom, not sensibly 
affected by self-interaction/screening errors.

● TDLDA performs also reasonably well, but must be done on top of an 
Exact-DFT or an xc-potential with a 1/r asymptotic correct behaviour. 
DFT-LDA+TDLDA severely red-shifted.

● r-RPA towards SC-RPA improves on RPA, but consistent improvements 
require modifications of the kernel.
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