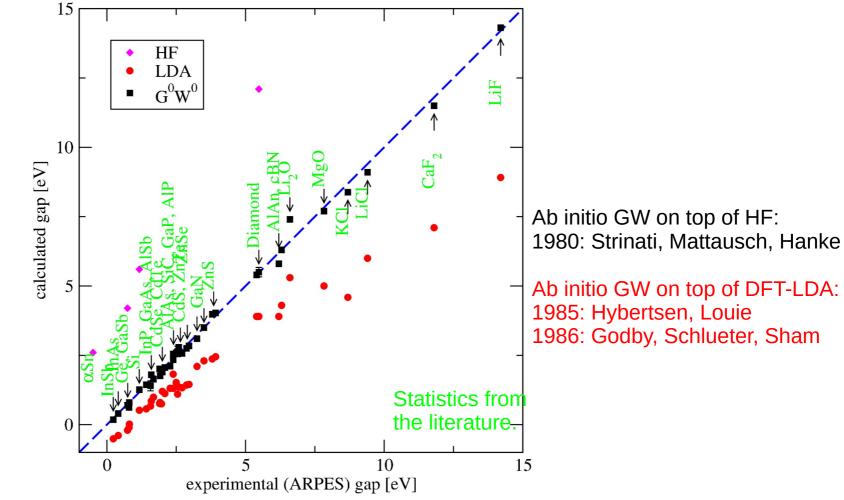


dRPA, RPAx, SRPA, SCRPA, rRPA, ...: tell me who you are and I will tell your RPA

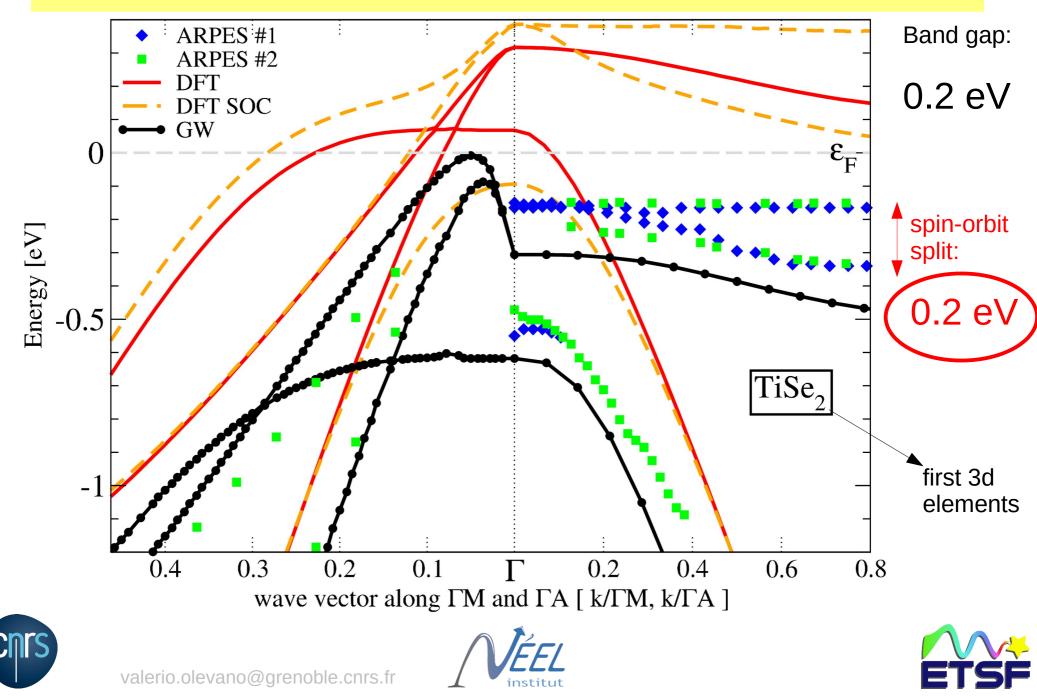
Valerio Olevano in memory of Peter Schuck



7 🖌 🍺

Background

• We need a **benchmark** for many-body theories & approx.


Is the Experiment a good benchmark?



What about Relativistic Effects?

and electron-phonon, 0-point motion correction to the gap?

Computational Materials Science 83 (2014) 341-348

Verification of first-principles codes: Comparison of total energies, phonon frequencies, electron–phonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo

S. Poncé^{a,*}, G. Antonius^b, P. Boulanger^c, E. Cannuccia^d, A. Marini^e, M. Côté^b, X. Gonze^a

^a Université catholique de Louvain, Institute of Condensed Matter and Nanosciences, NAPS Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve, Belgium

^b Département de Physique, Université de Montreal, C.P. 6128, Succursale Centre-Ville, Montreal H3C 3J7, Canada

^c Institut Néel, 25 Avenue des Martyrs, BP 166, 38042 Grenoble cedex 9, France

^d Institut Laue Langevin, BP 156, 38042 Grenoble, France

e Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione, Italy

ARTICLE INFO

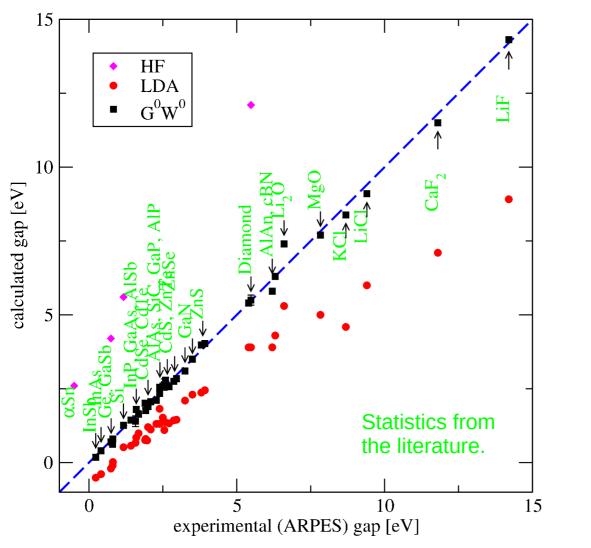
Article history: Received 3 September 2013 Received in revised form 16 November 2013 Accepted 19 November 2013 Available online 12 December 2013

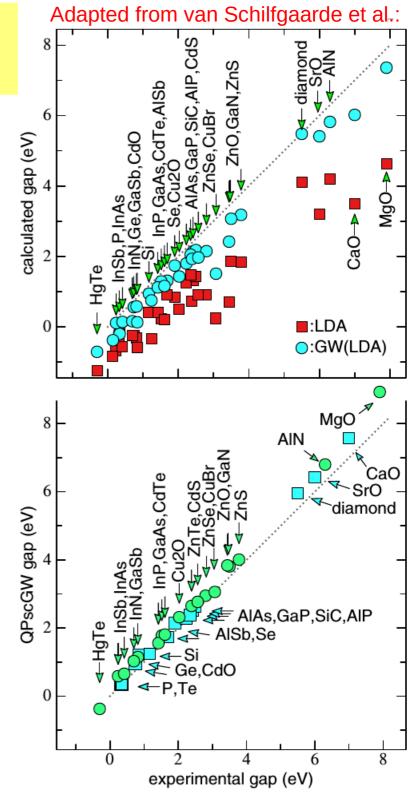
Keywords:

Density functional perturbation theory Electron-phonon coupling Temperature dependence Verification Allen-Heine-Cardona theory Zero-point motion renormalization Diamond

ABSTRACT

With the ever-increasing sophistication of codes, the verification of the implementation of advanced theoretical formalisms becomes critical. In particular, cross comparison between different codes provides a strong hint in favor of the correctness of the implementations, and a measure of the (hopefully small) possible numerical differences. We lead a rigorous and careful study of the quantities that enter in the calculation of the zero-point motion renormalization of the direct band gap of diamond due to electron–phonon coupling, starting from the total energy, and going through the computation of phonon frequencies and electron–phonon matrix elements. We rely on two independent implementations: Quantum Espresso + Yambo and ABINIT. We provide the order of magnitude of the numerical discrepancies between the codes, that are present for the different quantities: less than 10^{-5} Ha per atom on the total energy (-5.722 Ha/at), less than 0.07 cm⁻¹ on the Γ , L, X phonon frequencies (555-1330 cm⁻¹), less than 0.5% on the square of the electron–phonon matrix elements and less than 4 meV on the zero-point motion renormalization of each eigenenergies (44-264 meV). Within our approximations, the DFT converged direct band gap renormalization in diamond due to the electron–phonon coupling is -0.409 eV (reduction of the band gap).


in diamo


- --- . - ---

CrossMark

Background

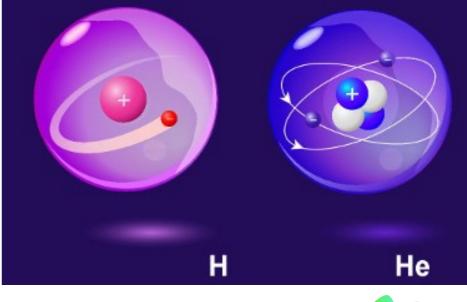
 Is a comparison to the Experiment really meaningful?

Background

- We must check our many-body approaches against **Exact Solution benchmarks!**
- Getting rid of:
 - mass corrections
 - electron-phonon
 - relativistic effects
 - QED
 - .
- which mask real many-body performances.

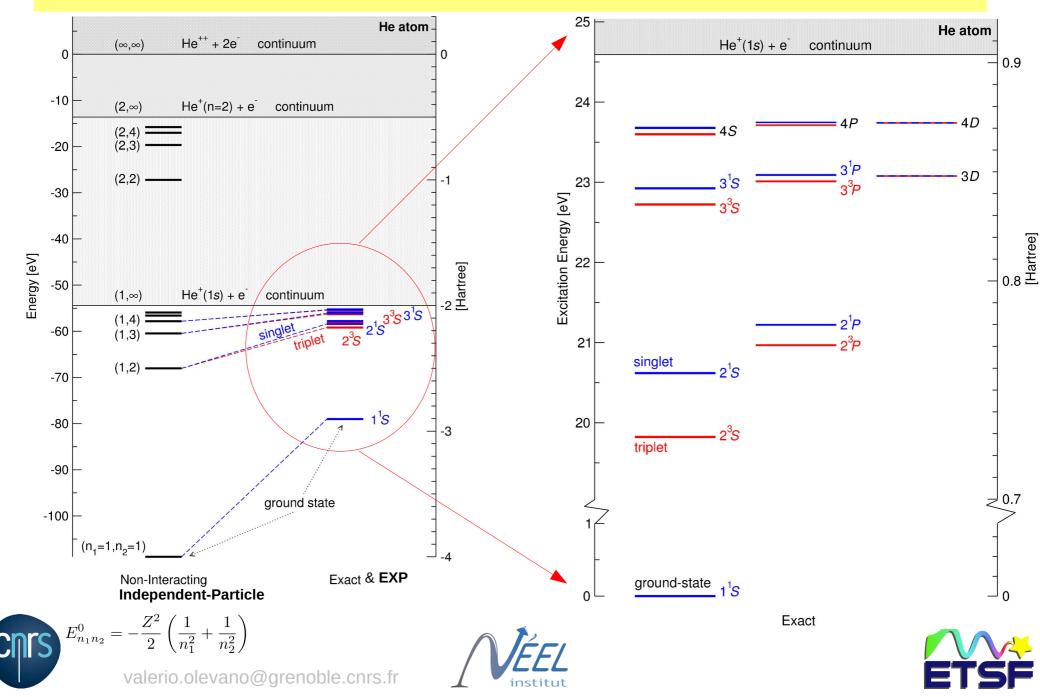
Peter's proposal: Lipkin model

- Only two levels (p=N degenerate) model.
- Exact solution available.
- My criticism: Too far from reality?



He atom

- **Exact solution** (Hylleraas) available! for both ground and excited states.
- The simplest many-body system (although here many=2)
- Not a model, but even a **Real System**!


$$H = -\frac{\partial_{r_1}^2}{2} - \frac{\partial_{r_2}^2}{2} - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{|r_2 - r_1|}$$

Helium atom electronic structure

Hylleraas 1929 exact calculation

$$s = r_1 + r_2$$

- $t = r_1 r_2$
- $u = r_{12} = |\mathbf{r}_1 \mathbf{r}_2|$

Hylleraas coordinates (3 scalars instead than 6)

Formal Solution to the He S.E. in a **Mathematical** sense

$$\Phi(s, t, u) = e^{-ks} \sum_{l,m,n} c_{lmn} s^l t^m u^n$$
(for singlets \rightarrow space-symmetric even function of t

$$\Rightarrow m = 0, 2, 4$$

Hylleraas functions

 $E_{1^1\!S} = -2.90324 \pm 0.00048 \quad (\pm 0.013\,{\rm eV})~~{
m Ground~state~energy}$

Hylleraas: a really EXACT solution

Year	Reference	Helium atom $1^{1}S$ ground state energy [Ha]				
1929	Hylleraas	-2.903 24				
1957	$\operatorname{Kinoshita}$	-2.903 722 5				
1966	Frankowski & Pekeris	-2.903 724 377 032 6 ► EXP accuracy: 10 ⁻⁹ Ha				
1994	Thakka & Koga	-2.903 724 377 034 11 4 4				
1998	Goldman	-2.903 724 377 034 119 594				
1999	Drake	-2.903 724 377 034 119 596				
2002	Sims & Hagstrom	-2.903 724 377 034 119 598 299 9				
2002	Drake <i>et al.</i>	-2.903 724 377 034 119 598 305				
2002	Korobov	-2.903 724 377 034 119 598 311 158 7				
2006	Schwartz	-2.903 724 377 034 119 598 311 159 245 194 404 440 049 5				
2007	Nakashima & Nakatsuji	-2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37				

- Numerically exact solution fulfilling the Numerical Analysis mathematical definition
- E_{0}^{He} became for physicists the mathematicians π

Helium atom: a triumph of Quantum Mechanics!

Ionisation Potential [cm⁻¹]

	non-relativistic Hylleraas	reduced-mass correction		relativistic corrections	QED radiative corrections	^e THEORY	EXPERIMEN [®]	Г
H^{-} He Li ⁺ Be ²⁺ B ³⁺ C ⁴⁺	6090.644289 198344.58014348 610120.4882 1241253.351 2091806.533 3161805.752	3.315791 27.192711 47.7689 75.681 104.436 144.864	3.928 4.785 4.960 5.619 6.046 6.878	$\begin{array}{r} 0.304 \\ 0.562 \\ -19.69 \\ -114.52 \\ -372.88 \\ -919.00 \end{array}$	0.0037 1.341 7.83 27.1 65.7 132	6083.092 198310.699 610079.62 1241259.5 2092003.2 3162441	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15 0.02 meV
					Pekeris P	R (1958)		
	 $H = -\frac{\delta}{2}$	$\frac{\partial_{r_1}^2}{2} - \frac{\partial_{r_2}^2}{2} - \frac{\partial_{r_2}^2}{2} - \frac{\partial_{r_2}^2}{2} - \frac{\partial_{r_2}^2}{2} - \frac{\partial_{r_1}^2}{2} - \frac{\partial_{r_2}^2}{2} - \frac{\partial_{r_1}^2}{2} - \frac{\partial_{r_2}^2}{2} - \frac{\partial_{r_2}^$	$-rac{Z}{r_1}-rac{Z}{r_2}$	- +	$-r_1 $		/ Experiment for IF $10.6664 \pm 2.10^{\circ}$	

valerio.olevano@grenoble.cnrs.fr

Today Experiment for IP and E $198310.6664 \pm 2 \cdot 10^{-4} \text{cm}^{-1}$ $2.903569880 \pm 10^{-9} \text{Ha}$

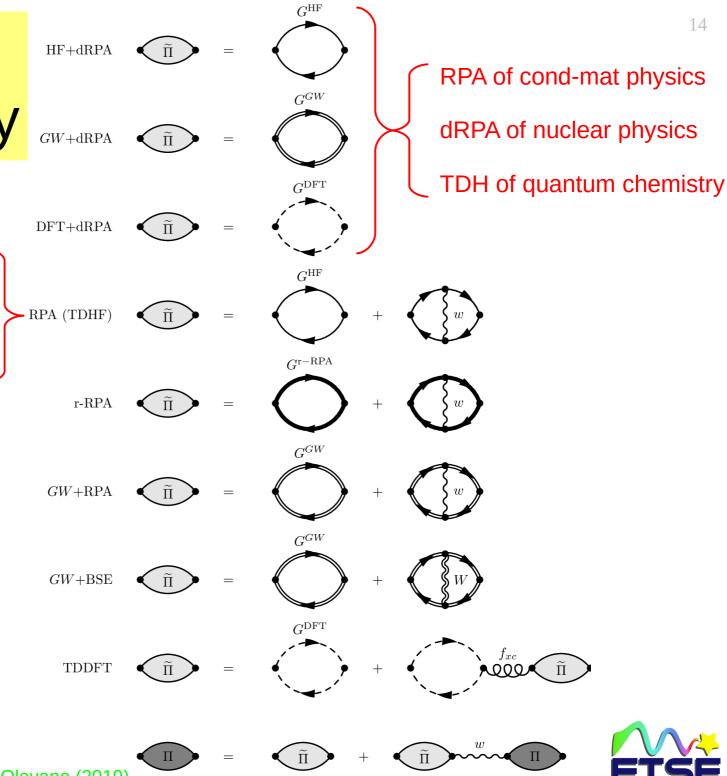
Outline

Comparing **many-body** approaches:

- HF and post-HF
- QMC
- DFT / TDDFT
- GW / BSE
- RPA and post-RPA

On the He atom exact solution for the:

- Ground state
- Quasiparticle charged excitations
- Optical neutral excitations



RPA-ology: Polarizability

RPA of nuclear physics RPAx of cond-mat physics

TDHF of quantum chemistry

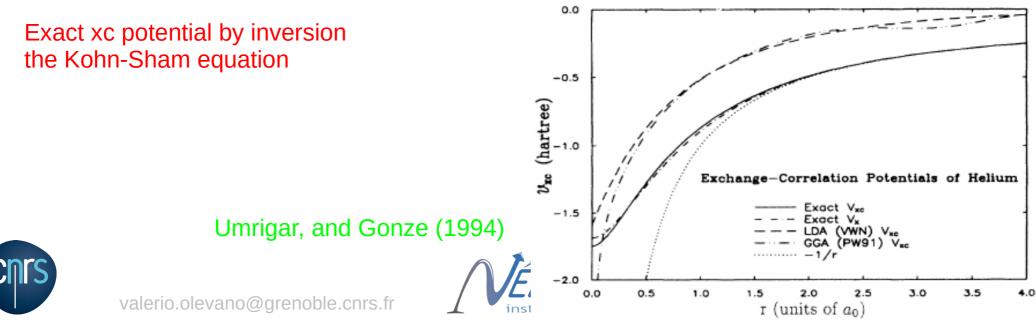
Li, Drummond, Schuck and Olevano (2019)

He atom Ground State

He atom Ground State

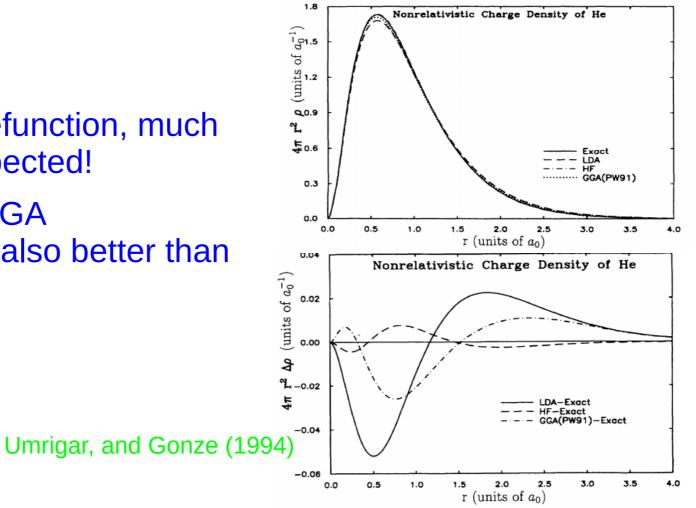
Method	Energy [Ha]	[eV]
Noninteracting	$-4 \qquad E_{n_1n_2}^0 = -\frac{Z^2}{2} \left(\frac{1}{n_1^2} + \frac{1}{n_2^2} \right)$	
Hartree	-1.9517	
HF	-2.8616	77.868
DFT-LDA	-2.8348	77.139
DFT-GGA	-2.8929	78.720
Exact-DFT $[62]$	-2.903724377034118	
Exact $[10]$	-2.903724377034119598311159245194404	79.014

- Errors:
 - HF: 1.1 eV = correlation energy
 - DFT-LDA: 1.9 eV (error of LDA, not of DFT)
 - DFT-GGA: 0.3 eV


He atom and Exact-DFT

• Thank to the Hylleraas Exact solution, we have the **Exact-DFT exchange-correlation**!

$$\Psi^{\text{exact}}(r_1, r_2) \to \rho^{\text{exact}}(r) \to \phi^{\text{exact}-\text{KS}}_{\text{HOMO}}(r) = \sqrt{\frac{\rho^{\text{exact}}(r)}{2}} \to v_{xc}^{\text{exact}-\text{DFT}}(r)$$


$$\left[-\frac{\partial_r^2}{2} - \frac{Z}{r} + v_H[\rho^{\text{exact}}](r) + v_{xc}^{\text{exact}-\text{DFT}}(r)\right]\phi_{\text{HOMO}}^{\text{exact}-\text{KS}}(r) = \epsilon_{\text{HOMO}}^{\text{exact}-\text{KS}}(r) \quad \text{Kohn-Sham equation}$$

$$v_{xc}^{\text{exact}-\text{DFT}}(r) = \epsilon_{\text{HOMO}}^{\text{exact}} + \frac{1}{2} \frac{\partial_r^2 \phi_{\text{HOMO}}^{\text{exact}-\text{KS}}(r)}{\phi_{\text{HOMO}}^{\text{exact}-\text{KS}}(r)} + \frac{Z}{r} - v_H[\rho^{\text{exact}}](r)$$

He atom Ground State

- Good HF wavefunction, much better than expected!
- but LDA and GGA wavefunctions also better than expected.

EXACT vs exact: QMC

Year	Reference	Helium atom $1^{1}S$ ground state energy [Ha]
1929	Hylleraas	-2.903 24
1957	$\operatorname{Kinoshita}$	-2.903 722 5
1966	Frankowski & Pekeris	-2.903 724 377 032 6 EXP accuracy: 10 ⁻⁹ Ha
1994	Thakka & Koga	-2.903 724 377 034 114 4
1998	Goldman	-2.903 724 377 034 119 594
1999	Drake	-2.903 724 377 034 119 596
2002	Sims & Hagstrom	-2.903 724 377 034 119 598 299 9
2002	Drake <i>et al.</i>	-2.903 724 377 034 119 598 305
2002	Korobov	-2.903 724 377 034 119 598 311 158 7
2006	Schwartz	-2.903 724 377 034 119 598 311 159 245 194 404 440 049 5
2007	Nakashima & Nakatsuji	$\textbf{-2.903 724 377 034 119 598 311 159 245 194 404 446 696 9}{05 37}$

 $E^{\rm DMC} = -2.9037246(9)$

CASINO, Jastrow wavefunction, CPU time: 32h (VMC) + 121h (DMC)

However:

- He ground state nodeless wavefunction: no sign problem
- statistical error: not a numerical analysis exact solution
- DMC: $\Delta E / 10 \rightarrow CPU * 100 \rightarrow N \& N$ accuracy: $10^{68}h$ (age of the universe = $10^{14}h$)

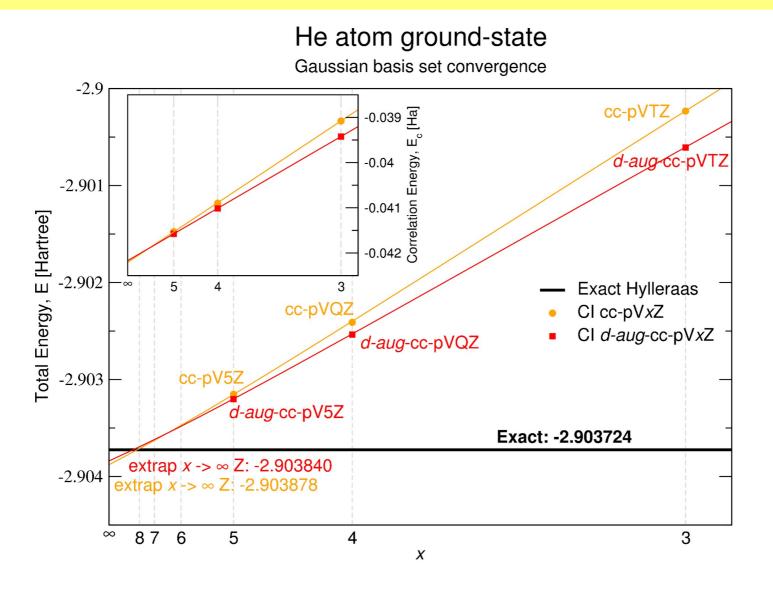
EXACT vs exact: CI

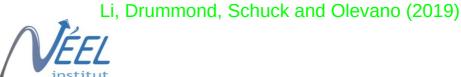
Year	Reference	Helium atom $1^{1}S$ ground state energy [Ha]
1929	Hylleraas	-2.903 24
1957	Kinoshita	
1966	Frankowski & Pekeris	-2.903 724 377 032 6 EXP accuracy: 10 ⁻⁹ Ha
1994	Thakka & Koga	-2.903 724 377 034 11 4 4
1998	Goldman	-2.903 724 377 034 119 59 4
1999	Drake	-2.903 724 377 034 119 596
2002	Sims & Hagstrom	-2.903 724 377 034 119 598 299 9
2002	Drake <i>et al.</i>	-2.903 724 377 034 119 598 299 9 -2.903 724 377 034 119 598 305
2002	Korobov	-2.903 724 377 034 119 598 311 158 7
2006	Schwartz	-2.903 724 377 034 119 598 311 159 245 194 404 440 049 5
2007	Nakashima & Nakatsuji	-2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37

 $E^{\mathrm{CI}} = -2.900$ full-CI cc-pVTZ ORCA calculation

 $E^{\text{CI}} = -2.9032$ *d-aug-*cc-pV5Z: *non plus ultra!*

Chemical Accuracy: 1 kcal/mol ~ 0.001 Ha


Impossible to provide an error bar: not a Numerical Analysis exact solution



Full-CI extrapolation

He atom Ground State

Method	Energy [Ha]
Noninteracting	-4
Hartree	-1.9517
HF	-2.8616
DFT-LDA	-2.8348
DFT-GGA	-2.8929
Exact-DFT 62	-2.903724377034118
RPA (TDHF)	-2.9097
r-RPA	-2.9085 \triangleleft towards SCRPA
GW + BSE	-2.9080
CI	-2.9032
QMC-VMC (SJ)	-2.90372220(7)
QMC-DMC	-2.9037246(9)
Exact 10	-2.903724377034119598311159245194404
	Li, Drummond, Schuck and Olevano (201

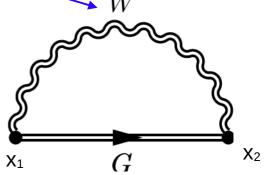
He atom Ground State

Energy contribution	$_{\mathrm{HF}}$	Exact-DFT	VMC
Kinetic	+2.8615	+2.867082	+2.90377(6)
External $(e-N)$	-6.7489	-6.753267	-6.75332(6)
Hartree	+2.0515	+2.049137	
Exchange	-1.0257		
Exchange-Correlation		-1.066676	
Many-body $(e-e)$			+0.94585(5)
Total	-2.8616	-2.903724	-2.90372220(7)
Correlation	-0.0421		
Exact 6	-2.9037	724377	

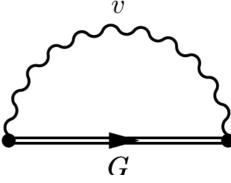
valerio.olevano@grenoble.cnrs.fr

Li, Drummond, Schuck and Olevano (2019)

He atom Charged Excitations



GW approximation to the Self-Energy


$$W(r, r', \omega) = \epsilon^{-1}(r, r', \omega) \frac{1}{|r-r'|}$$
Dynamical Screened Interaction W (in RPA approx.)

GW Self-Energy $\Sigma^{GW}(x_1, x_2) = iG(x_1, x_2)W(x_1, x_2) =$

Hartree-Fock Self-Energy

$$\Sigma_{x}(x_{1}, x_{2}) = iG(x_{1}, x_{2})V(x_{1}, x_{2}) =$$

Bare Coulombian Potential v

valerio.olevano@grenoble.cnrs.fr

I)

He Quasiparticle states: Ionisation Potential (IP) Electron Affinity (EA)

QPstate [eV]	HF	GW	Exact & EXP	Exact-DFT	DFT-LDA
1s (= - IP)	-24.979	-24.696	-24.591	-24.591	-15.522
2s (= - EA)	0.590	0.580	>0	-4.291	0.331
2р	2.603	2.570		-3.445	1.841
3s	3.794	3.725		-1.755	2.692

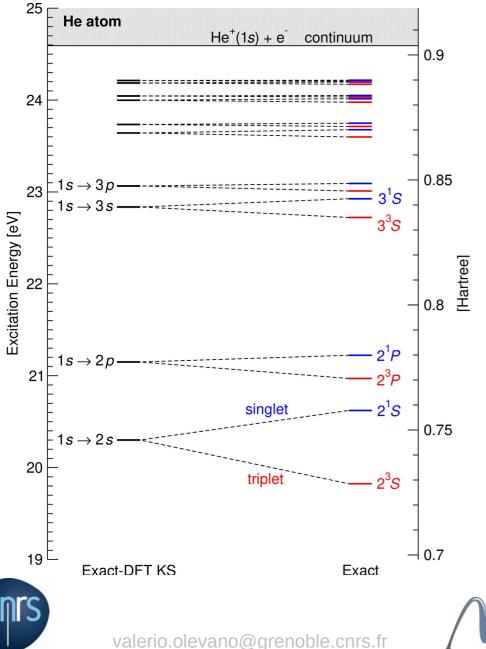
- HF error on IP: 0.4 eV
- GW error on IP improves to: 0.1 eV
- The Exact-DFT HOMO KS eigenvalue provides the Exact IP.
- The EXP indicates a negative EA (unbound state):
 - like in HF and GW and unlike Exact-DFT
- The Exact-DFT LUMO KS eigenvalue has nothing to see with the real EA!

He

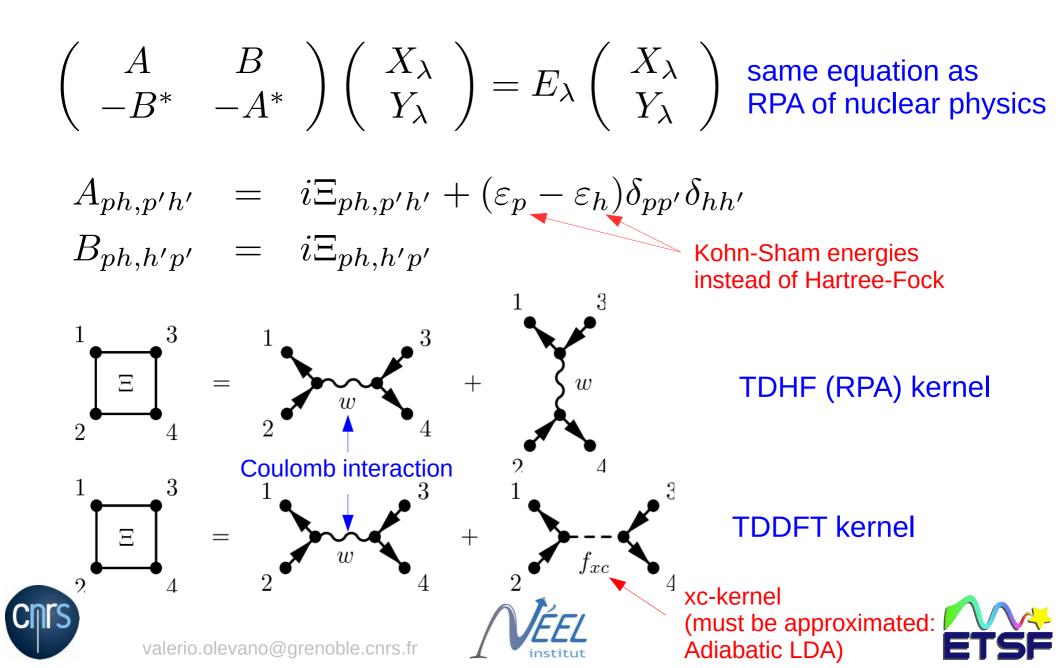
HOMO-LUMO gap

[eV]	HF	GW	EXP	Exact-DFT	DFT-LDA
1s → 2s	25.569	25.276	>24.591	20.300	15.853

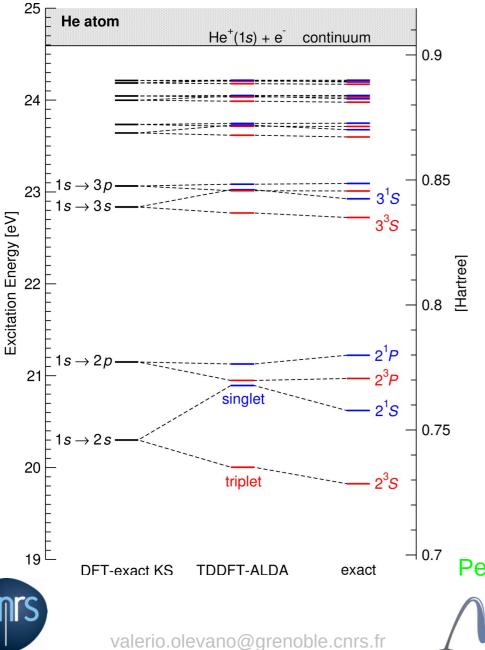
- Qualitatively correct HOMO-LUMO gap in both HF and GW
- Usual 30~40% DFT-LDA underestimation
- The Exact-DFT HOMO-LUMO gap has **nothing to see** with the real HOMO-LUMO gap!
 - Useless to struggle searching for a DFT functional overperforming Exact-DFT on the HOMO-LUMO gap.


He atom Neutral Excitations

He Neutral Excitations: Exact-DFT KS energy-differences

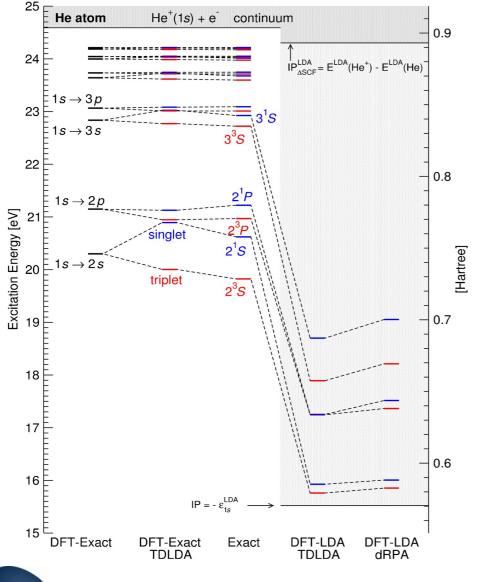

- Exact-DFT Kohn-Sham energy-differences already in surprising good agreement with Exact neutral excitations!
- Exact-DFT KS energydifferences reproduce the correct Rydberg series (highest lying states) → correct 1/r behaviour of the Exact-DFT exchangecorrelation potential!

Savin, Umrigar and Gonze (1998)



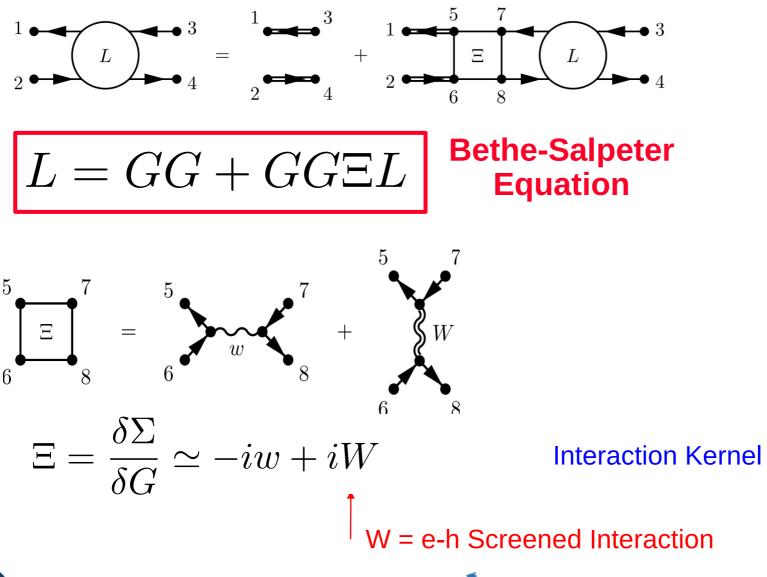
DFT → TDDFT

He Neutral Excitations: Exact-DFT+TDLDA


- Exact-DFT+Exact-TDDFT must of course reproduce the Exact result.
- Approximated TDLDA on top of Exact-DFT introduces the right singlet-triplet exchange split (but thank to the v term) and performs reasonably well.
- TDLDA performance: 0.2 eV error.

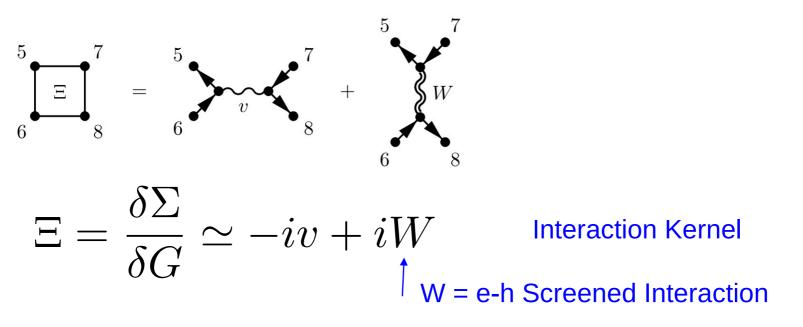
Petersilka, Gross and Burke (2000)

He Neutral Excitations: DFT-LDA+TDLDA



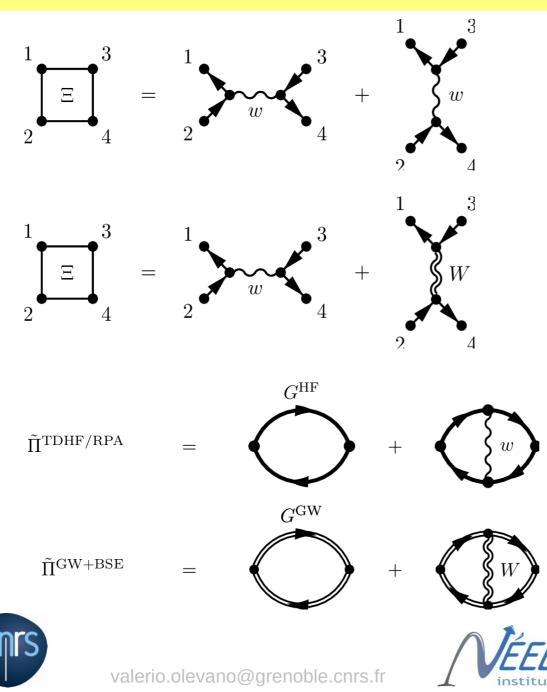
- DFT-LDA+TDLDA strongly red-shifted
- Usually believed that the DFT-LDA+TDLDA spectrum is unbound, but it depends on how the IP is calculated:
 - 1st KS energy?
 - or DeltaSCF method?

Bethe-Salpeter Equation



BSE kernel: approximations

1st approx: GW approx on the Self-Energy $\Sigma = i GW$ 2nd approx: neglect dW / dG $\frac{\delta\Sigma}{\delta G} = iW + iG\frac{\delta W}{\delta Q}$ 3rd approx: neglect frequency dependence in $W(\omega) = W(0)$



BSE vs TDHF=RPA(nuclear physics)

TDHF / RPA (nuclear physics)

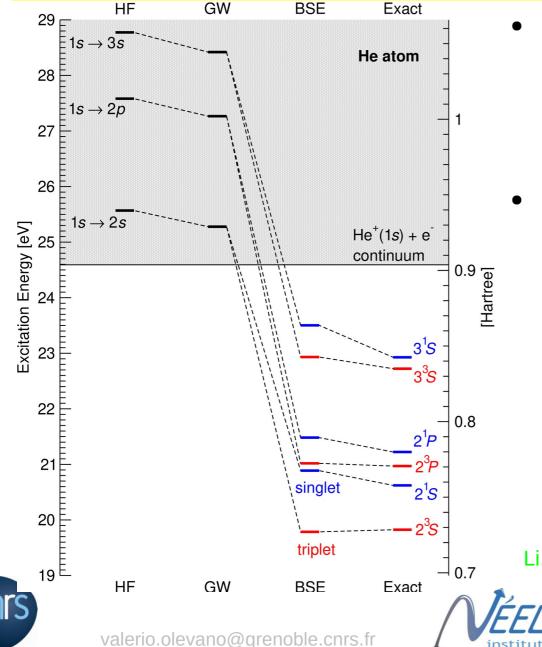
BSE

• Screening is the GW+BSE way to correlations!

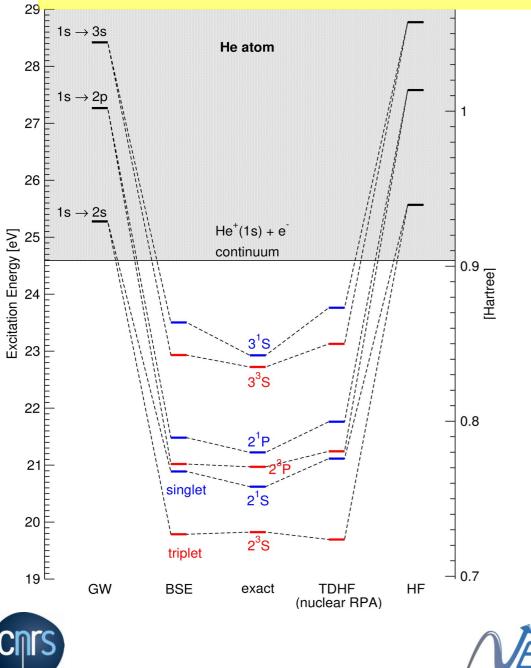
BSE vs TDHF=RPA(nuclear physics)

$$\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X_{\lambda} \\ Y_{\lambda} \end{pmatrix} = E_{\lambda} \begin{pmatrix} X_{\lambda} \\ Y_{\lambda} \end{pmatrix}$$

GW quasiparticle energies instead of Hartree-Fock (we start from a ground state which already contains some correlation)

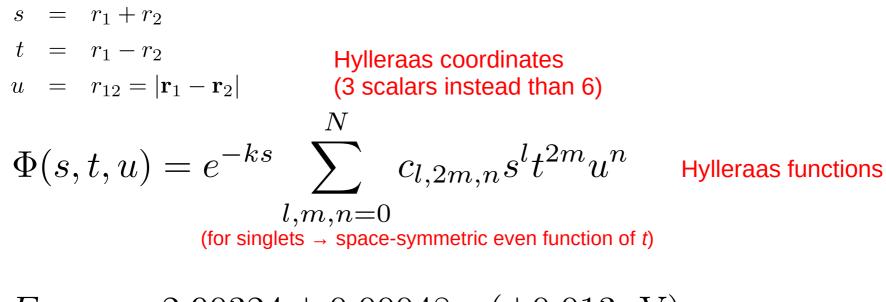


He Neutral Excitations: GW+BSE



- HF and GW quasiparticle energy-differences, unlike Exact-DFT KS, lye in the continuum, **as they must**.
- In contrast to TDDFT, the BSE kernel has the hard task to bring excitations 5 eV down from the continuum.

Li, Holzmann, Duchemin, Blase, Olevano (2017)


GW+BSE vs nuclear RPA (TDHF)

- nuclear RPA (TDHF): twice the GW-BSE error!
- Self-interaction/screening problems not really affecting
 - or for < 0.1 eV
 - see also "GW on H atom", Nelson, Bokes, Rinke, Godby 2007)

Hylleraas exact calculation

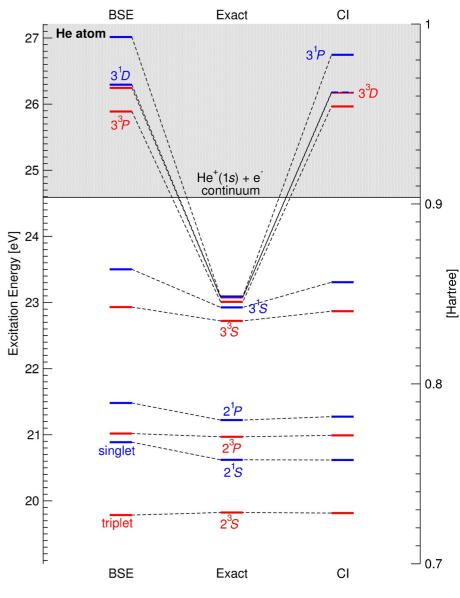
 $E_{1^1S} = -2.90324 \pm 0.00048 \quad (\pm 0.013 \,\mathrm{eV})$ Hylleraas (1929)

$$\begin{split} & \Phi(r_1, r_2) = \psi_{1s}^{Z_e}(r_1) \psi_{1s}^{Z_e}(r_2) \\ & \mathsf{N} = \mathbf{0} \to \\ & \psi_{1s}^{Z_e}(r) = \sqrt{\frac{Z_e^3}{\pi}} e^{-Z_e r} \\ & \to \quad Z_e = Z - 5/16 \\ & \text{(sc)} \end{split}$$

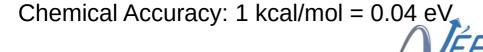
 $E_{11S}^{\rm scr} = -2.848 \pm 0.056 \quad (\pm 1.5 \,\mathrm{eV})$

 $E_{11S}^0 = -4.0$

valerio.olevano@grenoble.cnrs.fr

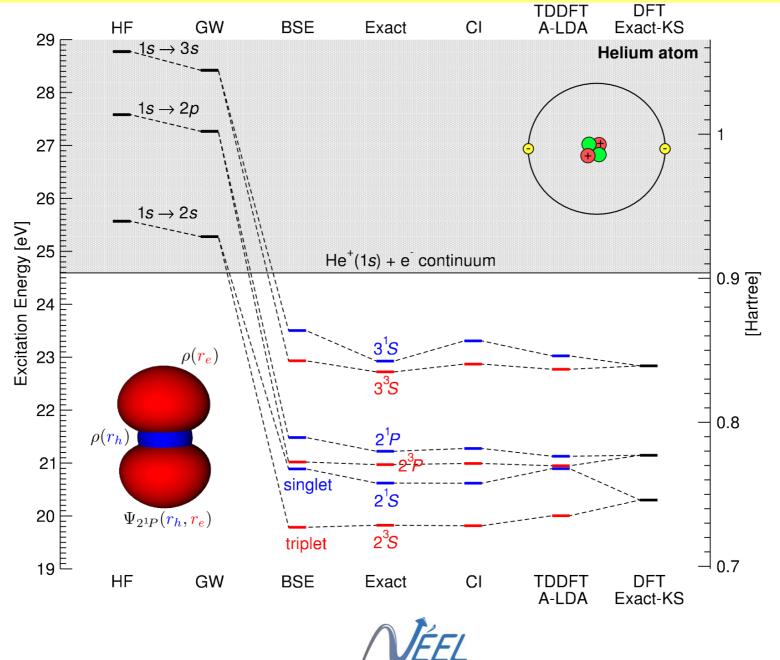

effective charge (screening)

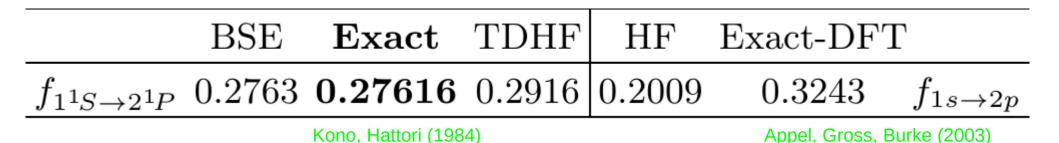
 It is not that strange that screening capture most of correlations even in 2electrons He atom



GW+BSE vs full CI

- Gaussian basis set convergence: d-aug-cc-pV5Z: non plus ultra! and only converged 2S, 2P, 3S
- 2³S GW+BSE error: **< 0.1 eV**





CI vs Exact-DFT+TDLDA

Oscillator Strengths

- Oscillator Strengths are sensistive to both QP and Excitonic wavefunctions (independently from energies).
- Surprising **excellent agreement** on the first dipole allowed Oscillator Strength!

He atom: BSE Excitonic Wavefunction

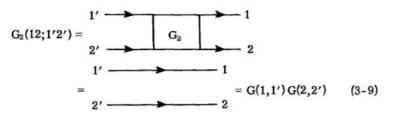
Electron hole-averaged and hole electron-averaged distribution proababilities

 $\Psi_{2^1\!P}(\pmb{r_h},\pmb{r_e})$

 $\rho(r_e)$

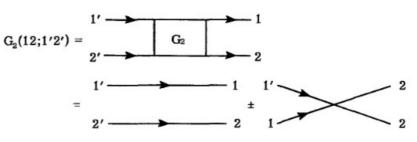
Excitonic Wavefunction

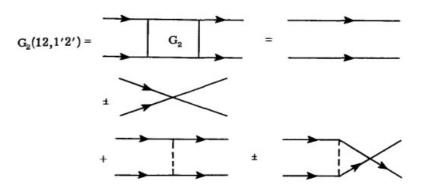
 $\rho(r_h)$



Beyond RPA: SC-RPA

• Any approximation to the 2-particle G has a corresponding approximation on the self-energy, and so on the 1-particle G, the ground state etc.

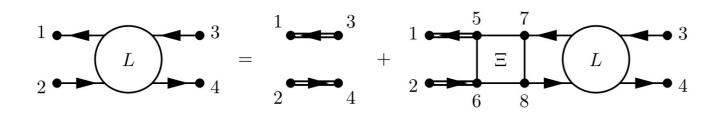

Hartree approximation:


If we then substitute (3-9) into the equation of motion (3-2a), we obtain the approximate equation for G:

$$\begin{split} \mathbf{i} & \frac{\partial}{\partial \mathbf{t}_{1}} + \frac{\nabla_{1}^{2}}{2m} \mp \mathbf{i} \int d\mathbf{r}_{2} \ \mathbf{v}(\mathbf{r}_{1} - \mathbf{r}_{2}) \mathbf{G}(2, 2^{+}) \end{bmatrix} \mathbf{G}(1, 1') \\ &= \left[\mathbf{i} \frac{\partial}{\partial \mathbf{t}_{1}} + \frac{\nabla_{1}^{2}}{2m} - \int d\mathbf{r}_{2} \ \mathbf{v}(\mathbf{r}_{1} - \mathbf{r}_{2}) \langle \mathbf{n}(\mathbf{r}_{2}) \rangle \right] \mathbf{G}(1, 1') \\ &= \delta(1 - 1') \end{split}$$
(3-10)

Hartree-Fock:

Born approximation:



Beyond RPA: SC-RPA

 Introducing correlations in the single-particle G (and in the ground-state) at the same level of the 2-particle G, self-consistently.

Towards SC-RPA: r-RPA

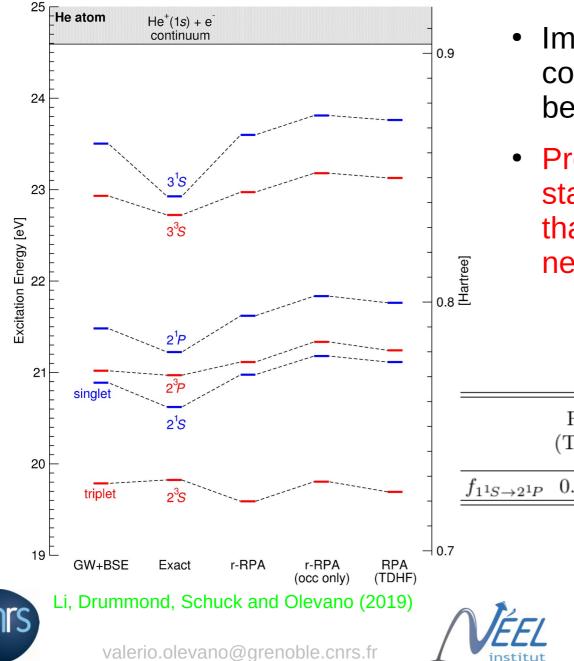
 From HF uncorrelated 0,1 integer occupation numbers, to fractional correlated ones:

Catara et al. 1996, Rowe 1968, correct to $O(|Y|^2)$:

$$n_h = n_h^0 - \frac{1}{2} \sum_{\lambda p} |Y_{\lambda}^{ph}|^2$$
$$n_p = +\frac{1}{2} \sum_{\lambda h} |Y_{\lambda}^{ph}|^2$$

$$N = \sum_{h} n_h + \sum_{p} n_p$$

Luttinger Theorem (checked up to 10⁻¹⁸)



nl	$_{\mathrm{HF}}$	GW	Exact	r-RPA	
1s (= -IP)	-0.9179	-0.9075	-0.9037	-0.9123	
2s (= -EA)	+0.0217	+0.0213	> 0	+0.0202	
2p	+0.0956	+0.0944		+0.0935	
3s	+0.1394	+0.1369		+0.1370	Ť٩

Occupation numbers at self-consistency

Towards SC-RPA: r-RPA

- Importance to include also corrections to QP energies beyond occupations only.
- Problem on the 1st excited state: importance of screening that should be contained in the neglected SC-RPA terms.

RPA (TDHF)		r-RPA occ. & ene.	Exact	GW + RPA	+
$_{1^{1}S \to 2^{1}P} 0.2916$	0.2889	0.2877	0.27616	0.2946	0.2763

Conclusions

- Many-body approaches should be benchmarked against safe exact solutions, possibly in real systems: He atom Hylleraas.
- On the ground-state energy: remarkable performances of DMC; SJ-VMC shows its bias, but the Gaussian full-CI error is larger.
- The unphysical Exact-DFT KS energy differences have in fact nothing to see with the exact HOMO-LUMO (Band) gap, but are surprisingly close to Optical gaps and excitations.
- GW+BSE performs unexpectedly well on the He atom, not sensibly affected by self-interaction/screening errors.
- TDLDA performs also reasonably well, but must be done on top of an Exact-DFT or an xc-potential with a 1/r asymptotic correct behaviour. DFT-LDA+TDLDA severely red-shifted.
- r-RPA towards SC-RPA improves on RPA, but consistent improvements require modifications of the kernel.

European Theoretical Spectroscopy Facility

Acknowledgements

Jing Li, Ivan Duchemin LETI CEA Grenoble

Xavier Blase CNRS Institut Neel Grenoble

CHEN

Neil Drummond University of Lancaster

Markus Holzmann, Peter Schuck CNRS LPMMC, Grenoble

