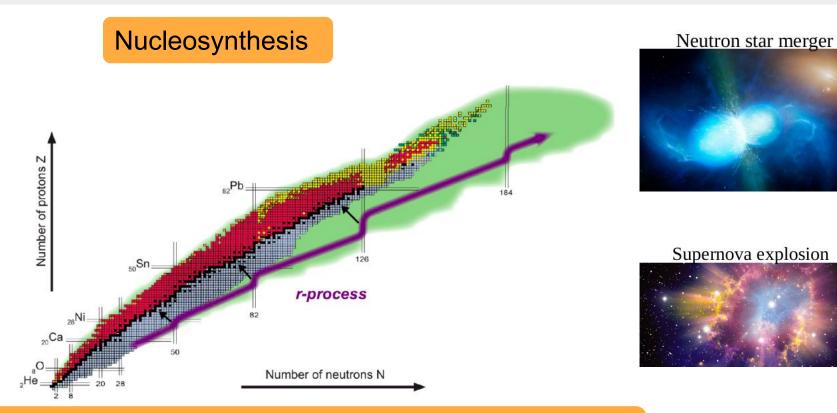
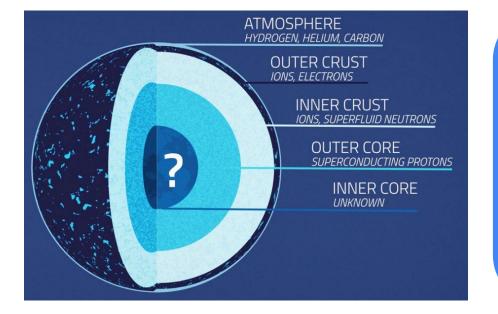


Constructing nuclear functionals for neutron stars and nucleosynthesis applications


Guilherme Grams, Wouter Ryssens, Guillaume Scamps, Stephane Goriely and Nicolas Chamel Astronomy and Astrophysics Institute (IAA) - ULB

UNIVERSITÉ LIBRE DE BRUXELLES

QMBC 2023 in memory of Peter Schuck, Orsay - 23/03/23


Motivation

Description of **nuclear masses** and **fission** barriers in regions *unknown experimentally*.

Motivation

Neutron star physics

Nuclear physics inputs:

- nuclear masses for the NS crust;
- infinite nuclear matter (INM) properties for the NS core and neutron fluid on inner crust.

The road to here

AN ENERGY DENSITY NUCLEAR MASS FORMULA (I). Self-consistent calculation for spherical nuclei

2

F. TONDEUR

Physique Nucléaire Théorique, Université Libre de Bruxelles, Campus de la Plaine, Cp 229, 1050 Bruxelles

Received 2 December 1977

Brussels mass models

The road to here

AN ENERGY DENSITY NUCLEAR MASS FORMULA (I). Self-consistent calculation for spherical nuclei

F. TONDEUR

Physique Nucléaire Théorique, Université Libre de Bruxelles, Campus de la Plaine, Cp 229, 1050 Bruxelles

Received 2 December 1977

A Hartree–Fock–Bogoliubov mass formula

HFB-1 mass model BSk-1 Skyrme interaction

Brussels

mass models

M. Samyn^a, S. Goriely^{a,*}, P.-H. Heenen^b, J.M. Pearson^c, F. Tondeur^d

^a Institut d'Astronomie et d'Astrophysique, ULB-CP226, 1050 Brussels, Belgium
 ^b Service de Physique Nucléaire Théorique, ULB-CP229, 1050 Brussels, Belgium
 ^c Dépt. de Physique, Université de Montréal, Montréal, PQ, Canada H3C 3J7
 ^d Institut Supérieur Industriel de Bruxelles, 1000 Brussels, Belgium

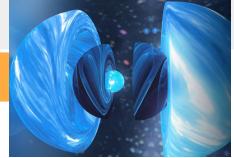
Received 28 June 2001; revised 11 September 2001; accepted 25 September 2001

PHYSICAL REVIEW C 93, 034337 (2016)

HFB-32 mass model BSk-32 Skyrme interaction

Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing

S. Goriely,¹ N. Chamel,¹ and J. M. Pearson² ¹Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium ²Département de Physique, Université de Montréal, Montréal (Québec), H3C 3J7 Canada


From BSk/HFB series

- Skyrme EDF + HFB method;
- fitted to essentially all experimental masses;
- constraints on infinite nuclear matter properties;
- extended Skyrme functional to obtain stiff neutron matter equation of state;
- realistic pairing with self-energy corrections.

Astrophysics interest.

From BSk/HFB series

- Skyrme EDF + HFB method;
- fitted to essentially all experimental masses;
- constraints on infinite nuclear matter properties;
- extended Skyrme functional to obtain stiff neutron matter equation of state;
- realistic pairing with self-energy corrections.

- Description of masses of nuclei in NS outer-crust.
- INM, *e.g.*, the symmetry energy coefficient J, and its slope L, are crucial for many NS properties, such as **crust-core transition and NS radius**.
- Necessary to describe heavy pulsars.
- Important for the description of superfluids in NS.

See N. Chamel and V. Allard talks.

The road to here

AN ENERGY DENSITY NUCLEAR MASS FORMULA (I). Self-consistent calculation for spherical nuclei

F. TONDEUR

Physique Nucléaire Théorique, Université Libre de Bruxelles, Campus de la Plaine, Cp 229, 1050 Bruxelles

Received 2 December 1977

A Hartree–Fock–Bogoliubov mass formula

M. Samyn^a, S. Goriely^{a,*}, P.-H. Heenen^b, J.M. Pearson^c, F. Tondeur^d

^a Institut d'Astronomie et d'Astrophysique, ULB-CP226, 1050 Brussels, Belgium
 ^b Service de Physique Nucléaire Théorique, ULB-CP229, 1050 Brussels, Belgium
 ^c Dépt. de Physique, Université de Montréal, Montréal, PQ, Canada H3C 3J7
 ^d Institut Supérieur Industriel de Bruxelles, 1000 Brussels, Belgium

Received 28 June 2001; revised 11 September 2001; accepted 25 September 2001

New BSk**G** family:

Brussels

HFB-1 mass model

BSk-1 nuclear force

mass models

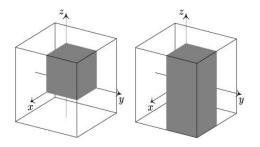
Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: effect of triaxial shape

Guillaume Scamps^{1,a}, Stephane Goriely¹, Erik Olsen¹, Michael Bender², Wouter Ryssens^{1,3}

¹ Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine CP 226, 1050 Brussels, Belgium
 ² Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, 69622 Villeurbanne, France
 ³ Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520, USA

Received: 7 September 2021 / Accepted: 26 November 2021

BSk**G**1


EPJA 57, 333 (2021)

Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: effect of triaxial shape

Guillaume Scamps^{1,a}, Stephane Goriely¹, Erik Olsen¹, Michael Bender², Wouter Ryssens^{1,3}

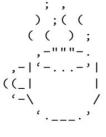
¹ Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine CP 226, 1050 Brussels, Belgium
 ² Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, 69622 Villeurbanne, France
 ³ Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520, USA

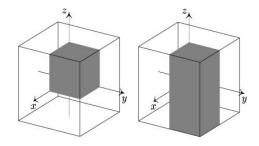
• Brussels-Skyrme-on-the-grid (BSkG);

BSkG1

EPJA **57**, 333 (2021)

Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: effect of triaxial shape


Guillaume Scamps^{1,a}, Stephane Goriely¹, Erik Olsen¹, Michael Bender², Wouter Ryssens^{1,3}

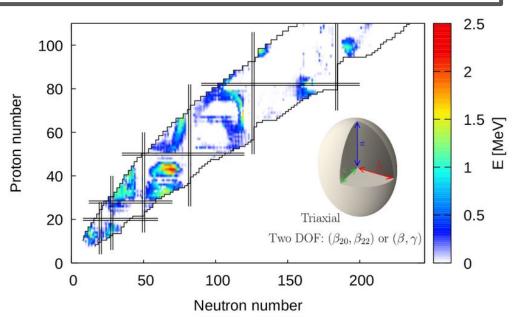

¹ Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine CP 226, 1050 Brussels, Belgium
 ² Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, 69622 Villeurbanne, France
 ³ Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520, USA

• Brussels-Skyrme-on-the-grid (BSkG);

- HFB code based coordinate space in 3D mesh -> MOCCa code (Ryssens et. al., EPJA 55, 93 (2019));
- better control of numerical accuracy;

Modular Cranking Code = MOCCa HFB solver at **3D coordinate-space on** Lagrangian mesh from W. Ryssens et al, [W. Ryssens PhD Thesis, ULB (2016).]

BSkG1


EPJA **57**, 333 (2021)

Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: effect of triaxial shape

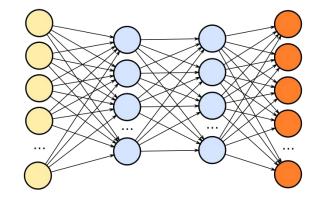
Guillaume Scamps^{1,a}, Stephane Goriely¹, Erik Olsen¹, Michael Bender², Wouter Ryssens^{1,3}

¹ Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine CP 226, 1050 Brussels, Belgium
 ² Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, 69622 Villeurbanne, France
 ³ Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520, USA

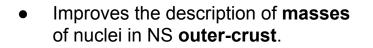
- Brussels-Skyrme-on-the-grid (BSkG);
- HFB code based coordinate space in 3D mesh -> MOCCa code (Ryssens et. al., EPJA 55, 93 (2019));
- better control of numerical accuracy;
- allow triaxial deformation.

BSkG1

EPJA **57**, 333 (2021)


Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: effect of triaxial shape

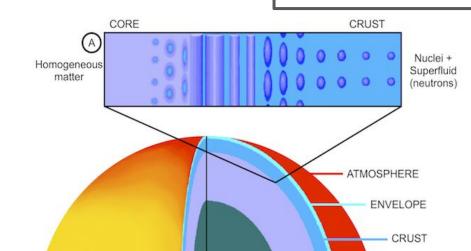
Guillaume Scamps^{1,a}, Stephane Goriely¹, Erik Olsen¹, Michael Bender², Wouter Ryssens^{1,3}


¹ Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine CP 226, 1050 Brussels, Belgium
 ² Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3, UMR 5822, 69622 Villeurbanne, France
 ³ Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520, USA

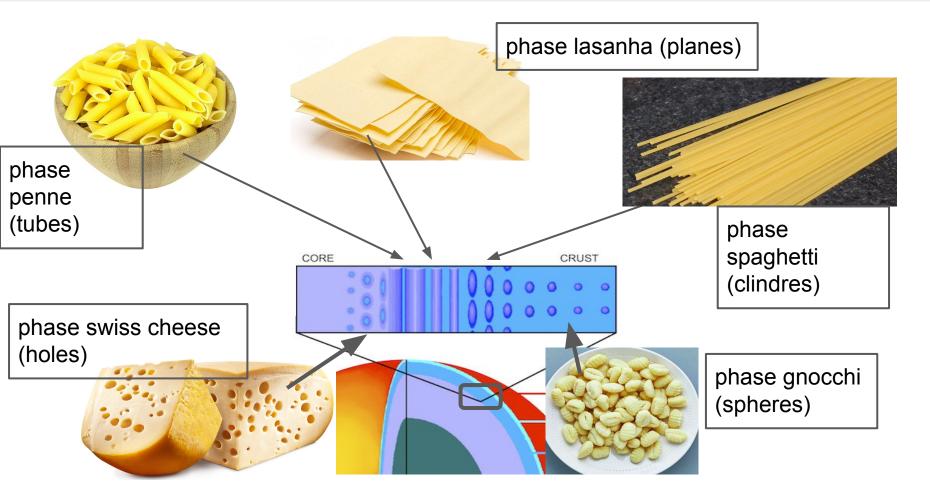
- Brussels-Skyrme-on-the-grid (BSkG);
- HFB code based coordinate space in 3D mesh -> MOCCa code (Ryssens et. al., EPJA 55, 93 (2019));
- better control of numerical accuracy;
- allow triaxial deformation.
- machine learning to accelerate the fit.

machine learning as emulator of MOCCa. MOCCa predictions for one nucleus ~ 20 minutes. Machine learning prediction for one nucleus ~ a few seconds.

Astrophysics interest.



• Nuclear **deformations** are important at the deep layers of the NS inner-crust, where **pasta phases** could be formed.


From BSkG series

- 3D coordinate-space on Lagrangian mesh (high numerical accuracy);
- triaxial deformation;
- breaks time-reversal symmetry (time-odd terms);

• fission properties included in the fit.

Pasta phases : see talk of N. Shchechilin.

Connects the best features of Brussels functionals.

From BSk/HFB series

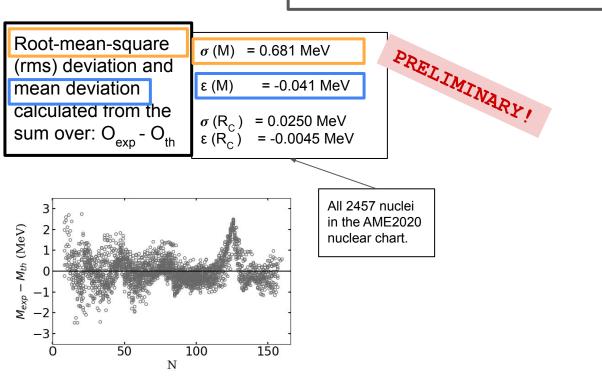
- Skyrme EDF + HFB method;
- fitted to essentially all experimental masses;
- constraints on infinite nuclear matter properties;
- extended Skyrme functional to obtain stiff neutron matter equation of state;
- realistic pairing with self-energy corrections.

From BSkG series

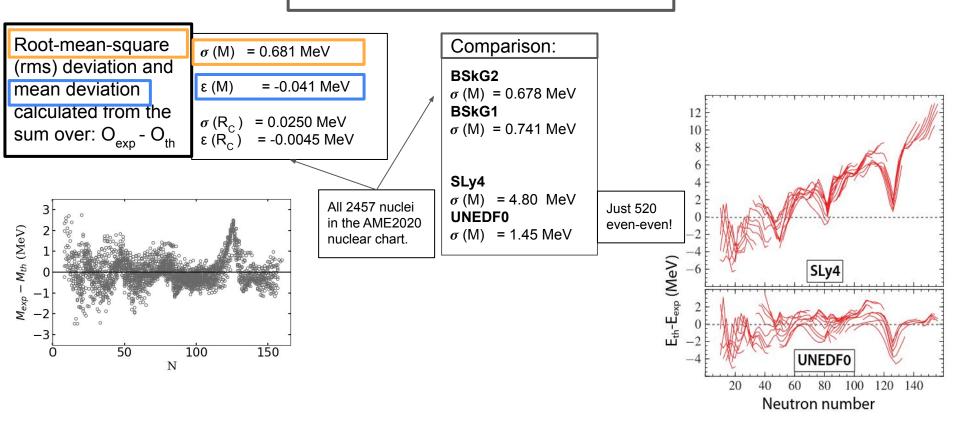
- 3D coordinate-space on Lagrangian mesh (high numerical accuracy);
- triaxial deformation;
- breaks time-reversal symmetry (time-odd terms);
- fission properties included in the fit.

Connects the best features of Brussels functionals.

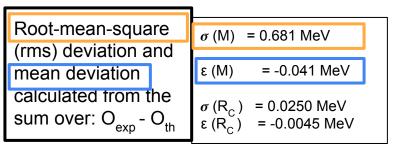
From BSk/HFB series

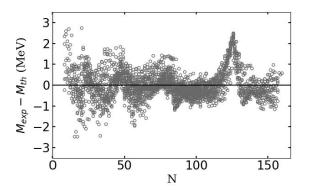

- Skyrme EDF + HFB method;
- fitted to essentially all experimental masses;
- constraints on infinite nuclear matter
- extended Skyrme functional to obtain stiff neutron matter equation of state;
- realistic pairing with self-energy corrections.

Not present in previous BSkG models.


From BSkG series

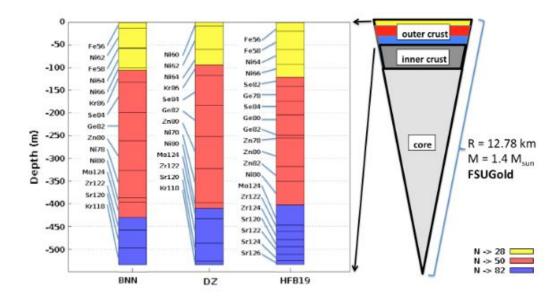
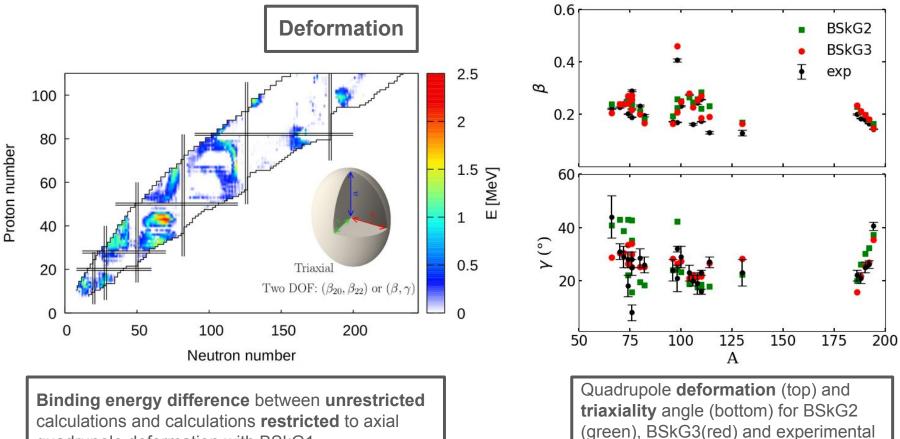
- 3D coordinate-space on Lagrangian mesh (high numerical accuracy);
- triaxial deformation;
- breaks time-reversal symmetry (time-odd terms);
- fission properties included in the fit.


Reproduction of known nuclear masses.



Reproduction of known nuclear masses.

Reproduction of known nuclear masses.

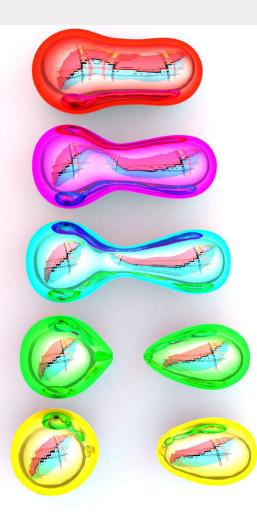
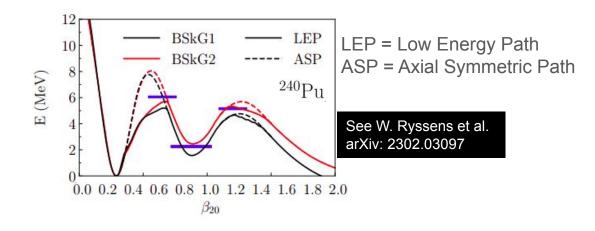
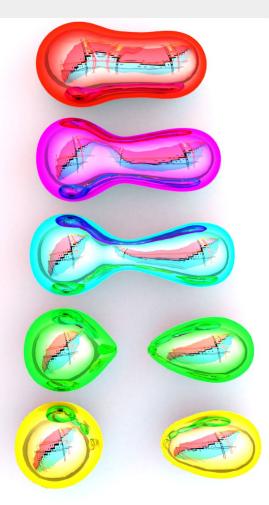
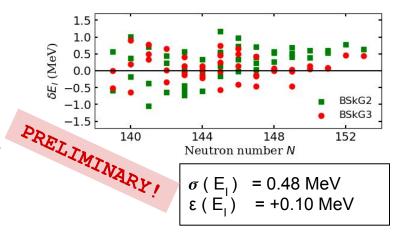

Fig. 4. Composition of a canonical $1.4 M_{\odot}$ neutron star with a 12.78 km radius as predicted by three mass models: "BNN-world", DZ, and HFB19.

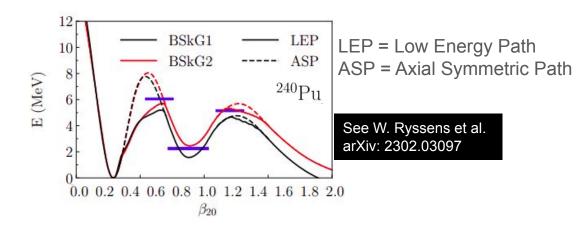
Figure from: J. Piekarewicz & R. Utama, Acta Phys. Pol. B 47, 659 (2016)

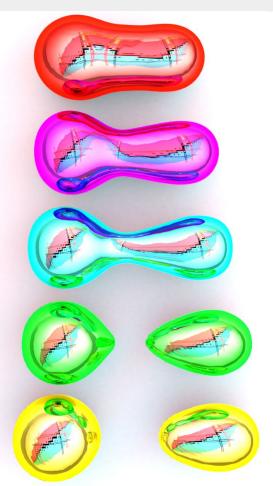

data (black).


quadrupole deformation with BSkG1.

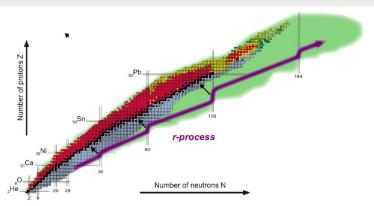
Fission barriers


Primary (E_I), secondary (E_{II}) *fission barrier* heights and fission isomer excitation energies (E_{iso}) of actinide nuclei.

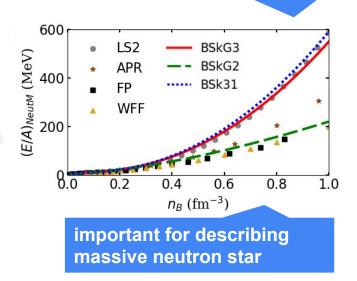




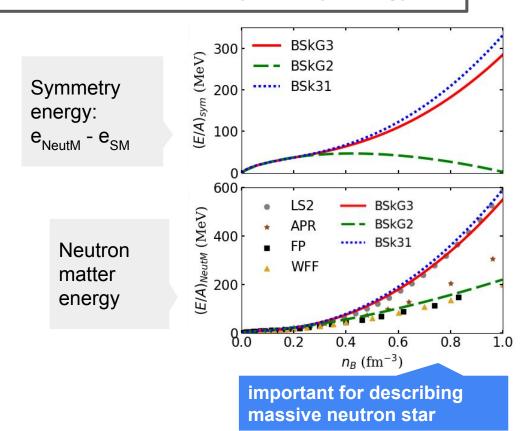
Fission barriers

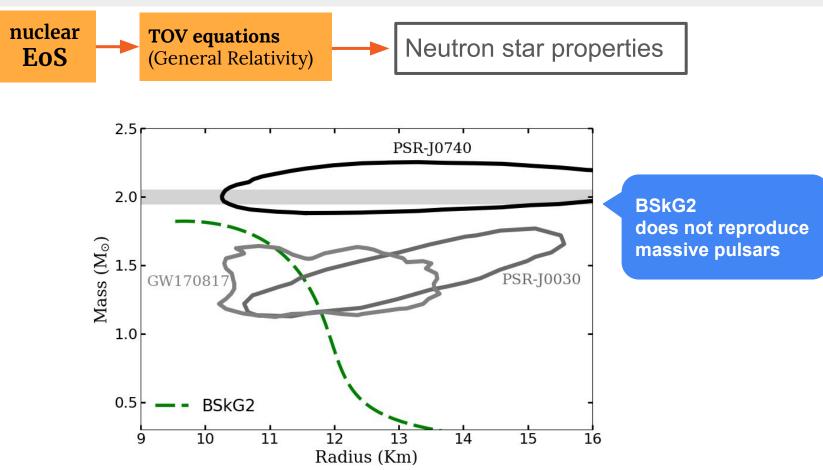

Primary (E_I), secondary (E_I) **fission barrier** heights and fission isomer excitation energies (E_{iso}) of actinide nuclei.

Fission barriers

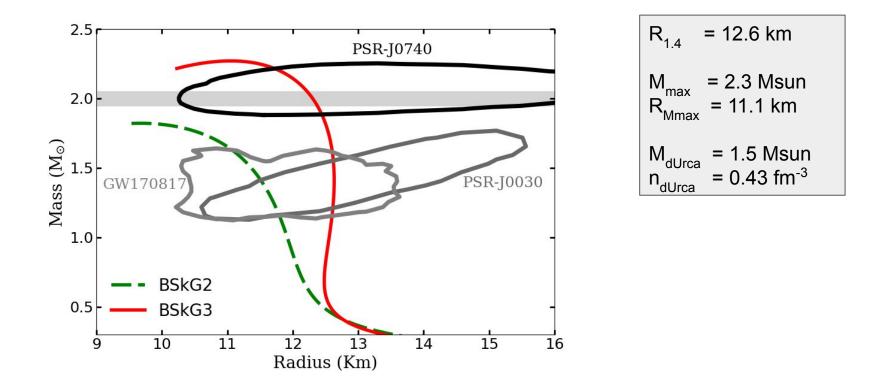

Fission properties impact several aspects of the r-process such as:

- "fission recycling";
- the **r-process abundances** in the $110 \le A \le 170$ region;
- the production of cosmic chronometers such as Th and U;
- the heating rate of kilonovae.

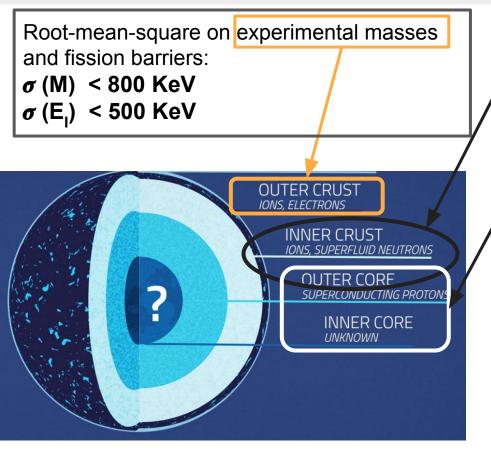

Neutron matter (NeutM) energy


Constraint in *high density* neutron matter energy included in the fit protocol

Neutron matter energy



Neutron matter (NeutM) & symmetry energy



Neutron star properties

Summary

- new **pairing** prescription with self-energy corrections (important for neutron and proton **superfluids** in NS **crust and core**);

- the stiff neutron matter EoS at high densities, which avoids the collapse of NS and allows the description of heavy pulsars;

The road ahead:

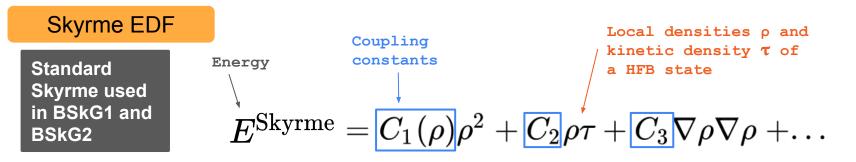
- systematic exploration of symmetry energy;
- move to finite temperature EoS;
- Fine-tune time-odd terms.

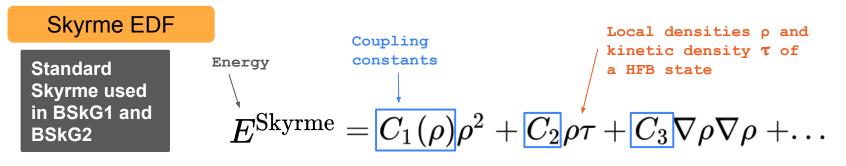
Acknowledgements

I thank:

- My collaborators: <u>Wouter Ryssens</u>, Guillaume Scamps, Stephane Goriely and Nicolas Chamel.
- The computational resources provided by the *Consortium des Équipements de Calcul Intensif* (CECI).
- The funding agencies FNRS and FWO.
- The EVEREST and MANASLU EOS projects.

• Thank you for the attention!




EOS The excellence of science

extra slides

Extended Skyrme used in BSkG3

$$E^{ ext{BSkG3}} = C_1(
ho)
ho^2 + C_2(
ho)
ho au + C_3(
ho)
abla
ho
abla
ho + \dots$$
 $C_2(
ho) = C_2(t_1, x_1, t_2, x_2) + C_2(t_4, x_4)
ho^eta + C_2(t_5, x_5)
ho^\gamma$

where t1,x1,...,t5,x5 are Skyrme parameters.

Ingredients of the mass model

(

We represent an atomic nucleus with N neutrons and Z protons with a many-body state of the Bogoliubov type, whose total energy E_{tot} we define as:

$$E_{\rm tot} = E_{\rm HFB} + E_{\rm corr} \,. \tag{1}$$

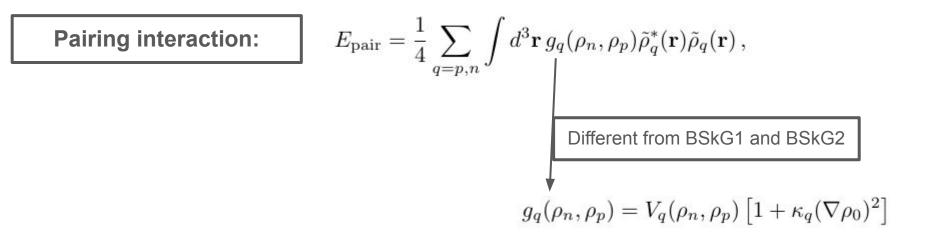
We call $E_{\rm HFB}$ the mean-field energy and $E_{\rm corr}$ is a set of corrections that account (approximately) for correlations that cannot be captured by single mean-field reference state constructed from separate neutron and proton orbitals. More precisely, the mean-field energy consists of five parts:

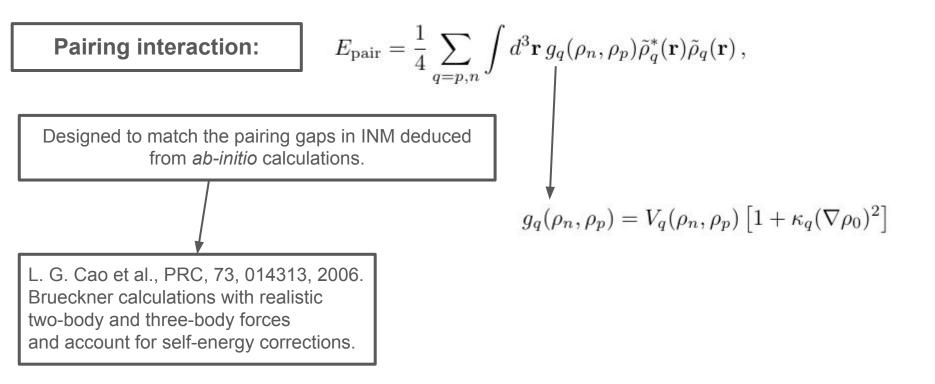
$$E_{\rm HFB} = E_{\rm kin} + E_{\rm Sk} + E_{\rm pair} + E_{\rm Coul} + E_{\rm cm}^{(1)},$$
 (2)

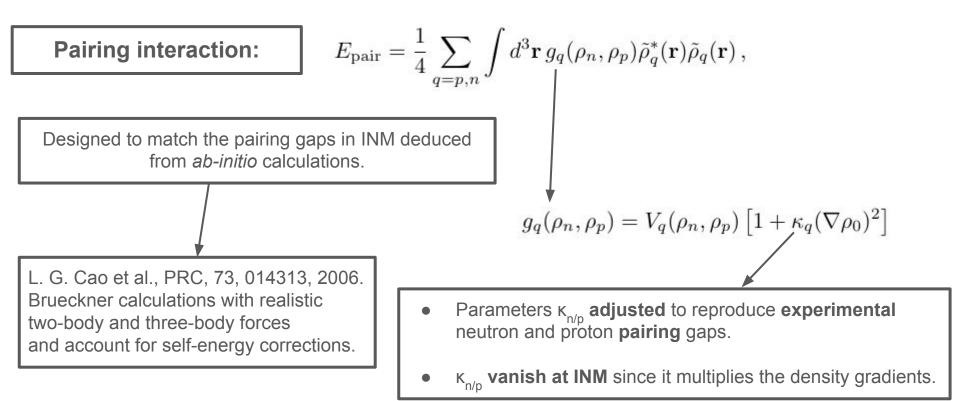
which are, respectively, the kinetic, Skyrme, pairing and the Coulomb energy and the one-body part of the centre-of-mass correction [24]. The correction energy E_{corr} is written in terms of three parts:

$$E_{\rm corr} = E_{\rm rot} + E_{\rm cm}^{(2)} + E_{\rm W} \,,$$
 (3)

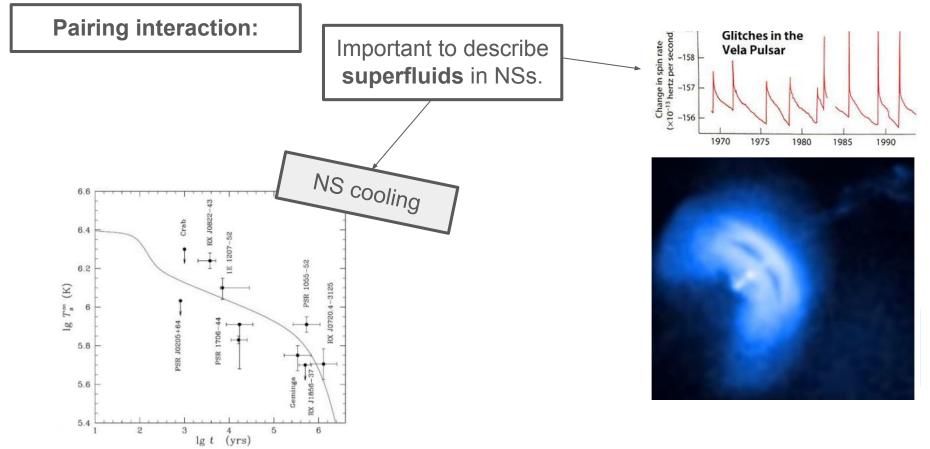
$$E_{\rm Sk} = \int d^3 \mathbf{r} \sum_{t=0,1} \left[\mathcal{E}_{t,\rm e}(\mathbf{r}) + \mathcal{E}_{t,\rm o}(\mathbf{r}) \right] \,,$$

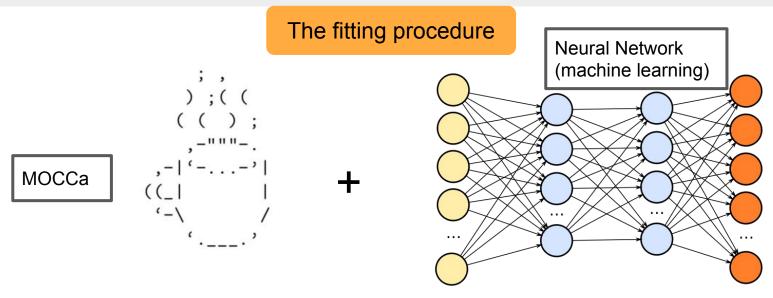

$$\begin{aligned} \mathcal{E}_{t,e}(\mathbf{r}) &= C_t^{\rho\rho}(\rho_0) \,\rho_t^2(\mathbf{r}) + C_t^{\rho\tau}(\rho_0) \,\rho_t(\mathbf{r}) \,\tau_t(\mathbf{r}) \\ &+ C_t^{\rho\nabla J} \rho_t(\mathbf{r}) \,\nabla \cdot \mathbf{J}_t(\mathbf{r}) \\ &+ C_t^{\rho\Delta\rho} \,\rho_t(\mathbf{r}) \,\Delta\rho_t(\mathbf{r}) \\ &+ C_t^{\nabla\rho\nabla\rho}(\rho_0) \,\nabla \rho_t(\mathbf{r}) \cdot \nabla \rho_t(\mathbf{r}) \\ &+ C_t^{\rho\nabla\rho\nabla\rho}(\rho_0) \,\rho_t(\mathbf{r}) \nabla \rho_0(\mathbf{r}) \cdot \nabla \rho_t(\mathbf{r}) \end{aligned} \tag{6}$$
$$\begin{aligned} \mathcal{E}_{t,o}(\mathbf{r}) &= C_t^{ss}(\rho_0) \,\mathbf{s}_t(\mathbf{r}) \cdot \mathbf{s}_t(\mathbf{r}) + C_t^{jj}(\rho_0) \,\mathbf{j}_t(\mathbf{r}) \cdot \mathbf{j}_t(\mathbf{r}) \\ &+ C_t^{j\nabla s} \,\mathbf{j}_t(\mathbf{r}) \cdot \nabla \times \mathbf{s}_t(\mathbf{r}) . \end{aligned} \tag{7}$$


$$C_t^{\rho\tau}(\rho_0) = +\frac{1}{2}C_{0t}^+(t_1, x_1) + \frac{1}{2}C_{0t}^-(t_2, x_2) + \frac{1}{2}C_{0t}^+(t_4, x_4)\rho_0^\beta + \frac{1}{2}C_{0t}^-(t_5, x_5)\rho_0^\gamma, \quad (8)$$


$$C_t^{\nabla\rho\nabla\rho}(\rho_0) = +\frac{3}{8}C_{0t}^+(t_4, x_4)\rho_0^\beta - \frac{1}{8}C_{0t}^-(t_5, x_5)\rho_0^\gamma, \quad (9)$$

$$C_t^{\rho \nabla \rho \nabla \rho}(\rho_0) = -\frac{1}{2} C_{0t}^+(t_4, x_4) \rho_0^{\beta - 1} \,. \tag{10}$$


33



The BSkG3 interaction

The BSkG3 functional

- Fitted to experimental masses, charge radii, proton and neutron pairing gaps,
- constrain infinite nuclear matter properties.

Deformed nuclei are important to describe pasta configurations in NS

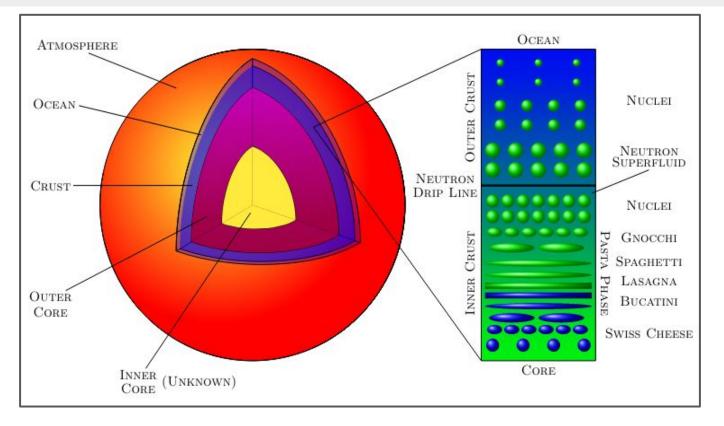
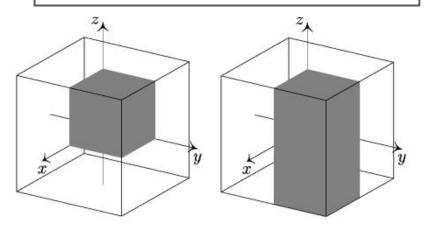
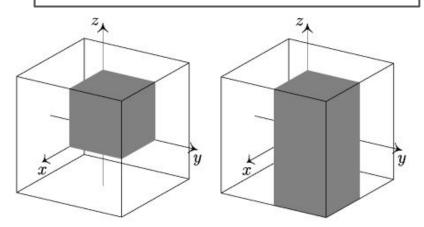



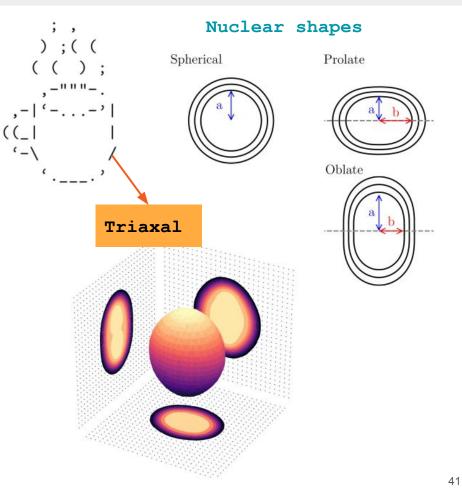
Figure from: Javier F. Acevedo et al JCAP 03, 038 (2020).

HFB solver

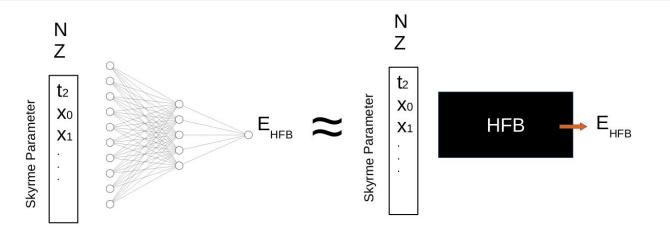
Modular Cranking Code = MOCCa

HFB solver at **3D coordinate-space on Lagrangian mesh** from W. Ryssens et al, W. R. PhD Thesis, ULB (2016).



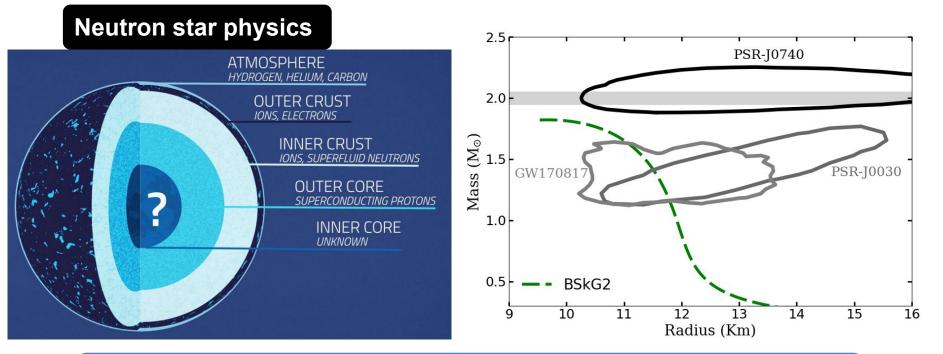


HFB solver


Modular Cranking Code = MOCCa

HFB solver at **3D coordinate-space on Lagrangian mesh** from W. Ryssens et al, W. R. PhD Thesis, ULB (2016).

Machine learning method to fit



- 1. Create a dataset of MOCCa results.
- 2. Adjust a machine learning system to create an emulator of the HFB solver.
- 3. Adjust the mass model parameters using the emulator.

Machine learning prediction for one nucleus \sim a few seconds. MOCCa predictions for one nucleus \sim 20 minutes.

4. The mass table is computed with MOCCa.

Motivation

Previous BSkG forces failed to reproduce massive neutrons stars.

The BSkG3 functional

The fitting procedure

- Deduce INM equations, e.g., symmetry energy, energy per particle, compressibility, effective mass, etc.
 I = I(t x x) K = K (t x x) m* = m* (t x x)
 - $J = J(t_2, x_0, x_1, ...), K_V = K_V(t_2, x_0, x_1, ...), m_{s/v}^* = m_{s/v}^*(t_2, x_0, x_1, ...),$
- 2. Impose constraints in the INM; obtain Skyrme parameters from the fit.

The BSkG3 functional

The fitting procedure

- 1. Deduce INM equations, e.g., symmetry energy, energy per particle, compressibility, effective mass, etc. $J = J(t_2, x_0, x_1, ...), K_V = K_V(t_2, x_0, x_1, ...), m_{s/v}^* = m_{s/v}^*(t_2, x_0, x_1, ...),$
- 2. Impose constraints in the INM; obtain Skyrme parameters from the fit.

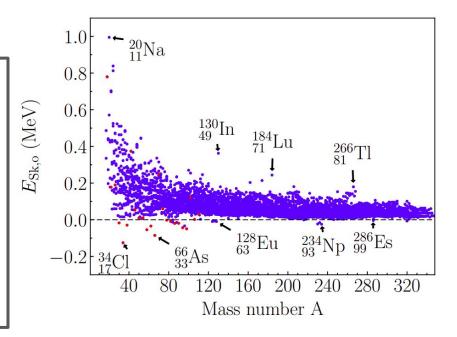
- Novelty at BSkG3: impose constraint at neutron matter energy (NeutM) at high density (1 fm⁻³) E_{NeutM}(at 1 fm⁻³) = E_{NeutM}(t₄,t₅,...,t₂,x₀,x₁, ...) ∈ [550, 600 MeV].
- 2. Possible thanks to the **extended Skyrme** form which contains t_4 and t_5 terms (density dependent extension of t_1 and t_2).
- 3. Ensures a **stiff** neutron matter **equation of state** (essential for **neutron stars**).

The BSkG functionals

BSkG2

EPJA 58, 246 (2022)

nuclei in the fitting protocol.

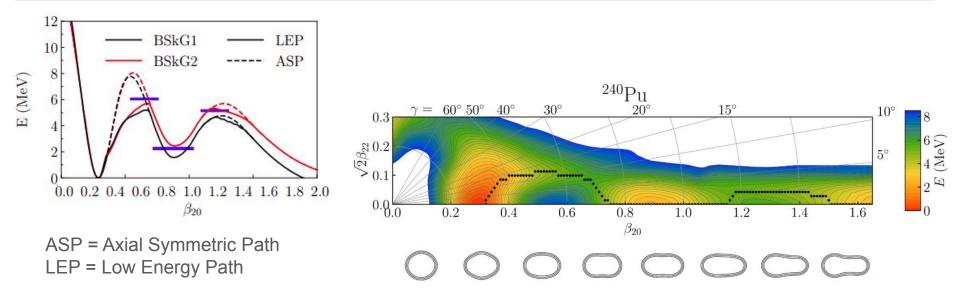

Skyrme–Hartree–Fock–Bogoliubov mass models on a 3D mesh: II. Time-reversal symmetry breaking

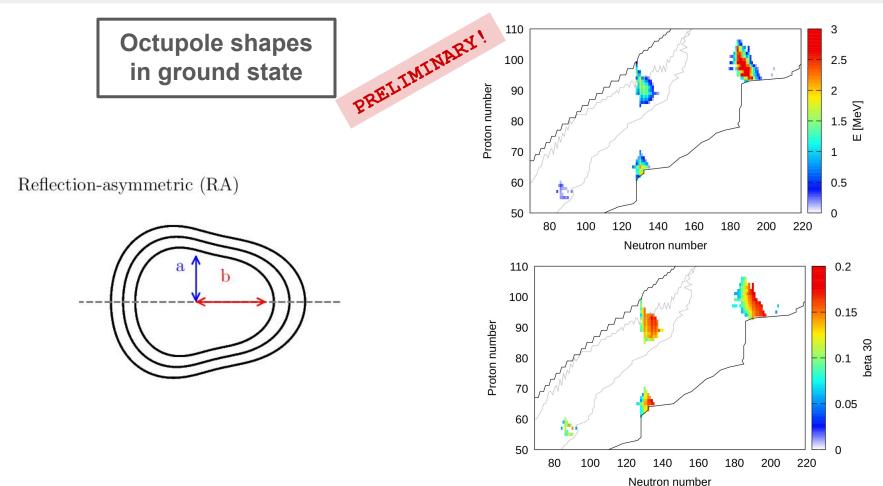
Wouter Ryssens^{1,a}, Guillaume Scamps^{1,2}, Stephane Goriely¹, Michael Bender³

¹ Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine CP 226, 1050 Brussels, Belgium

- ² Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
- ³ Université de Lyon, Université Claude Bernard Lyon 1, CNRS / IN2P3, IP2I Lyon, UMR 5822, 69622 Villeurbanne, France
- Allows for time-reversal symmetry breaking. Inclusion of 'time-odd' terms in the Skyrme EDF. No more Equal Filling Approximation (EFA).
 Incorporated information on the fission properties of twelve actinide

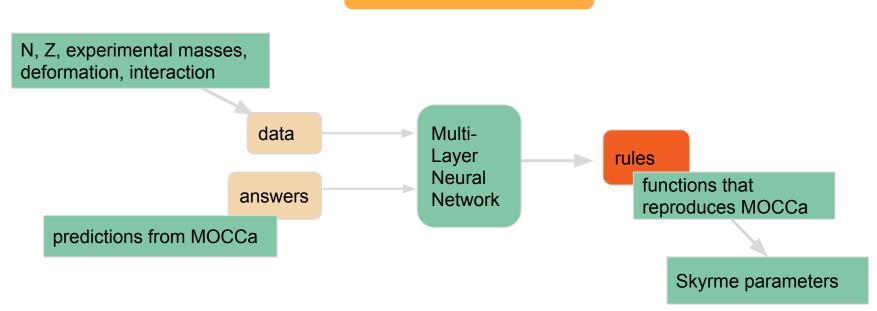
- Allows for time-reversal symmetry breaking. Inclusion of 'time-odd' terms in the Skyrme EDF - instead of Equal Filling Approximation (EFA) of previous model.
- Incorporated information on the **fission properties** of twelve actinide nuclei in the fitting protocol.


The BSkG functionals


BSk**G**2: fission properties

Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh. IIb. Fission properties of BSkG2.

arXiv: 2302.03097


Wouter Ryssens $^{\rm a,1},$ Guillaume Scamps $^{1,2},$ Stephane Goriely 1, Michael Bender 3

workflow

The fitting procedure

How to describe an atomic nucleus?

macroscopic description, e.g., LDM: liquid drop model

ab-initio: from the bare nucleon-nucleon interaction.

How to describe an atomic nucleus?

macroscopic description, e.g., LDM: liquid drop model.

too simple. (usually with no shell structure, neutron skin, pairing correlations...) *ab-initio*: from the bare nucleon-nucleon interaction.

not (yet) feasible to describe thousands of nuclei along the nuclear chart.

A good compromise:

Energy density functional (EDF): an effective description of nuclei based on one-body densities.

Allows for predictions across the entire nuclear chart, firmly founded on a **microscopic description** of the nucleus.

The road to here

AN ENERGY DENSITY NUCLEAR MASS FORMULA

(I). Self-consistent calculation for spherical nuclei

F. TONDEUR

Physique Nucléaire Théorique, Université Libre de Bruxelles, Campus de la Plaine, Cp 229, 1050 Bruxelles

Received 2 December 1977

HFB-1 mass model BSk-1 nuclear force

mass models

Brussels

A Hartree–Fock–Bogoliubov mass formula

M. Samyn^a, S. Goriely^{a,*}, P.-H. Heenen^b, J.M. Pearson^c, F. Tondeur^d

^a Institut d'Astronomie et d'Astrophysique, ULB-CP226, 1050 Brussels, Belgium
 ^b Service de Physique Nucléaire Théorique, ULB-CP229, 1050 Brussels, Belgium
 ^c Dépt. de Physique, Université de Montréal, Montréal, PQ, Canada H3C 3J7
 ^d Institut Supérieur Industriel de Bruxelles, 1000 Brussels, Belgium

Received 28 June 2001; revised 11 September 2001; accepted 25 September 2001

- EDF to calculate self-consistently the nuclei binding energies.
- Skyrme nucleon-nucleon interaction + Hartree-Fock many-body method.
- Fitted to a large number of experimental masses.
- **Pairing** channel first computed with BCS approximation (Tondeur 1977). From HFB-1 models the **Bogoliubov** method is applied.
- Constrained on infinite nuclear matter properties (saturation density, symmetry energy, etc).
- Axial symmetry + harmonic oscillator basis.
- Equal Filling Approximation (EFA).

The road to here

AN ENERGY DENSITY NUCLEAR MASS FORMULA

(I). Self-consistent calculation for spherical nuclei

F. TONDEUR

Physique Nucléaire Théorique, Université Libre de Bruxelles, Campus de la Plaine, Cp 229, 1050 Bruxelles

Received 2 December 1977

HFB-1 mass model BSk-1 nuclear force	A Hartree–Fock–Bogoliubov mass formula M. Samyn ^a , S. Goriely ^{a,*} , PH. Heenen ^b , J.M. Pearson ^c , F. Tondeur ^d ^a Institut d'Astronomie et d'Astrophysique, ULB-CP226, 1050 Brussels, Belgium ^b Service de Physique Nucléaire Théorique, ULB-CP229, 1050 Brussels, Belgium ^c Dépt. de Physique, Université de Montréal, Montréal, PQ, Canada H3C 3J7 ^d Institut Supérieur Industriel de Bruxelles, 1000 Brussels, Belgium Received 28 June 2001; revised 11 September 2001; accepted 25 September 2001	
New BSk G family:	Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: effect of triaxial shape Guillaume Scamps ^{1,a} , Stephane Goriely ¹ , Erik Olsen ¹ , Michael Bender ² , Wouter Ryssens ^{1,3} ¹ Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine CP 226, 1050 Brussels, Belgium ² Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IP21 Lyon / IN2P3, UMR 5822, 69622 Villeurbanne, France ³ Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520, USA Received: 7 September 2021 / Accepted: 26 November 2021	Coordinate space representation opens the door for applications such fission process

- BSkG1: coordinate space representation on a **3D mesh**, allows for **triaxial** nuclei. *Machine learning tools as emulator* for the parameter adjustment.
- BSkG2: break time-reversal symmetry: includes time-odd terms on EDF (no more EFA) + information on fission barriers included on the fit procedure.

Brussels

mass models

and nuclear pasta

on *neutron stars*

and supernovae.

- Nuclear interaction described by an extended Skyrme force;
- Many body problem solved with Hartree-Fock-Bogoliubov approximation.
- **3D coordinate space** representation. **Triaxial** deformation.

Difference from previous BSkGs to BSkG3:

- Nuclear interaction described by an extended Skyrme force;
- Many body problem solved with Hartree-Fock-Bogoliubov approximation.
- **3D coordinate space** representation. **Triaxial** deformation.

Difference from previous BSkGs to BSkG3:

Improvement on *pairing* channel. Functional fitted to ab-initio calculations of pairing gaps with self-energy corrections.

Important for the neutron **superfluid** present on **neutron star inner-crust**.

PHYSICAL REVIEW C 93, 034337 (2016)

Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing

S. Goriely,¹ N. Chamel,¹ and J. M. Pearson² ¹Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium ²Département de Physique, Université de Montréal, Montréal (Québec), H3C 3J7 Canada (Received 20 January 2016; published 31 March 2016)

- Nuclear interaction described by an extended Skyrme force;
- Many body problem solved with Hartree-Fock-Bogoliubov approximation.
- **3D coordinate space** representation. **Triaxial** deformation.

PHYSICAL REVIEW C 80, 065804 (2009)

Difference from previous BSkGs to BSkG3:

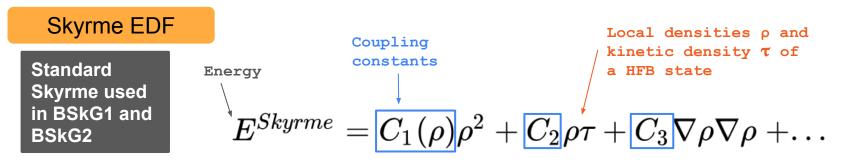
Two extra density depend terms on EDF. Already present on BSk-18 to BSk-32, it helps to obtain a *stiff neutron matter equation of state*, and maintained a good reproduction of experimental masses.

Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XI Stabilizing neutron stars against a ferromagnetic collapse

N. Chamel,¹ S. Goriely,¹ and J. M. Pearson²

¹Institut d'Astronomie et d'Astrophysique, CP226, Université Libre de Bruxelles, B-1050 Brussels, Belgium ²Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7, Canada (Received 11 September 2009; published 17 December 2009)

We construct a new Hartree-Fock-Bogoliubov (HFB) mass model, labeled HFB-18, with a generalized Skyrme force. The additional terms that we have introduced into the force are density-dependent generalizations of the


PHYSICAL REVIEW C 82, 035804 (2010)

Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter

S. Goriely,¹ N. Chamel,¹ and J. M. Pearson² ¹Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, B-1050 Brussels, Belgium ²Département de Physique, Université de Montréal, Montréal (Québec), H3C 3J7 Canada (Received 10 June 2010; published 24 September 2010)

We construct three new Hartree-Fock-Bogoliubov (HFB) mass models, labeled HFB-19, HFB-20, and HFB-21,

The BSkG3 functional

Extended Skyrme used in BSkG3

E