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l. Self-consistent RPA

PHYSICAL REVIEW C 72, 064305 (2005)

Self-consistent random phase approximation and the restoration of symmetries
within the three-level Lipkin model
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We show that it is possible to restore broken symmetries associated with the Goldstone mode within the
self-consistent random phase approximation (SCRPA) applied to the three-level Lipkin model. To do this, it is
necessary to include the so-called scattering terms in the RPA operator. We determine one- and two-body densities
as very convergent expansions in terms of the generators of the RPA basis. We show that SCRPA excitations
correspond to the heads of some rotational bands in the exact spectrum.

DOI: 10.1103/PhysRevC.72.064305 PACS number(s): 21.60.Jz, 24.10.Cn
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I. Self consistent RPA (SCRPA)
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B. Minimization procedure
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F. How to compute one-body densities 7



A. Single particle mean field (MF) basis

The aim of SCRPA is to describe in a consistent way
collective excitations around a ”deformed” vacuum. To
this purpose we define the general ”deformed” mean
field single particle basis

a;[w — Z Ckacjm ; (1)
!

as a superposition of "spherical” fermion creation oper-

ators on a-th level c};”.




”Quadrupole-like” operators

Kop = Z ChuiChu (2)
i

become in the "deformed” mean field basis

- T s
[




Hamiltonian

in the quadrupole-quadrupole scheme is given by

H = ZEa aa T 3 Zvaﬁ&y ():,GK'yé

aﬁqﬁ
= Z FEJAEJ + = Z G?,jklAEjAk‘i a (4)
17=0 tjkl =()

where the coefficients are given respectively by

n

Fij = Z €aCiaClia
a=(0
n
Gijki = Z Vaﬁf}féciaojﬁckfyclﬁ . (5)

affyo=0




SCRPA creation operators

QL — Z(Xgﬂlé‘QIni — Y,0Qmi) .
m>1

are written in terms of the normalized generators

5Qm,g - l/QAmi
—1/2
0Qmi = (5Qim =N, " Aim .

Summation contains not only

particle (vacant) - hole (occupied) (ph) states,
but also the so-called scattering states, 1.e.

pp and hh combinations.




Normalisation factor

is given by the mean value of the following commutator
on the correlated vacuum

(Ol[Aim, Anjl[0) = 0mndij (O] Aii|0) — (O] Amm|0))
5mn§iiji ’ (8)

and takes effectively into account Pauli correlations.




Excited states

are defined by the SCRPA creation operators
v) = Q}|0) . (9)

In the derivation of SCRPA equations one supposes
the existence of a correlated groundstate such that

Qu|0> =0. (10)

We do not need to know its analytical form within the
SCRPA procedure.




B. Minimisation procedure

of the mean excitation energy

s, = U H. QUII0) "

(0][Qu, Q1)[0)
with respect to X', Y amplitudes leads to the following

Equation of motion

(01[6Qu, [H, Q}]]|0) = w, (0[[6Qu, QL]0) . (12)




C. SCRPA equations

have formally the same structure as the linear
RPA equations

(4 5)(5) ().

SCRPA matrices

are given by the well-known relations

Aving = (01 |0Qui, | H.5Q%| | 10)

Bmi,nj — _<O| [‘ngip [H} 5@?13]_ |0> — _Ani,jn .
(14)




SCRPA matrix elements contain

One-body densities

(0]Ai;10) = 6:50] Az[0)
and

Two-body densities

(0] Aj; A |0)




The decoupled ansatz

(0] Az ARt 0) = (0] Aiz|0) (0] Aga| 0) - (17)

leads to the so-called
Renormalized RPA (r-RPA).




D. Generalized MF equations

defining the ”"deformed” minimum are obtained as
follows

(OI[H, 5Qf]|0) = 0. (18)

They are of the form

Y HymCo = Eq(0]Aaal0)Cra - (19)

where H,,,, contains SCRPA one and

two-body densities.
The SCRPA equations are solved togethe

with generalized MF equations iteratively.




Self-consistent RPA

describes the motion
In an anharmonic potential
depending on the amplitude
of the oscillation:

the position of the minimum
depends on the amplitude



E. How to compute two-body densities 7

The mversion of the RPA phonon operator is given by

1/2
Ami - Nmf; Z( man + }’;ﬂan)

v

A = N D (XaQu+Y0Ql) . (20)
By using
Q[0) = (0|Q" =0, (21)

we obtain for the two-body densities (m > i,n > j)

(0] ApiAns|0) = NY2N i;’“‘ZY:-X:j

'il'T 1i

1;2 1;2 v Vv
(0 Ai?ﬂAjﬂ Z Xm‘I-Yﬂj
1;2 1;2 v v
(0 AmiAjn Z Y;myﬂj
(0] Aim Augl0) = N,/2N,/2 Z Xn X (22)




F. How to compute one-body densities 7

In general one expands one-body density in terms of
SCRPA operators Q.

For the particular three-level Lipkin model we will use
an cxact procedure using the basic operators A,,,.



II. Three-level Lipkin model: SU(3) algebra

Three single particle levels a=0,1,2.

0 is a hole level, while 1,2 are particle levels.
Level degeneracy on projection pu 1s

N = 29 (number of particles).

”Quadrupole-like” operators

N
- 2 : i
Kﬂ-’ﬁ — Ca,ucﬁﬁ ) (23)
p=1
where c] . 1s a fermion creation operator on a-th level.

Commutation rules

[Kap, Kys] = 0pyKas — sl - (24)



Hamiltonian

2 2
V
H = Z EG_,KEM — 5 Z(K&{]Kﬂ,g -+ K{]D_,Kga) : (25)

a=0 a=1

Continuously broken symmetry

appears when €; = €.

The angular momentum projection operator

Lo =i(Ka — Ky9) | (26)

commutes with the Hamiltonian, i.e.

[Ha Eﬂ] = 0. (27)



Exact solution

The eigenstates can be obtained from the diagonalisa-
tion procedure by the following expansion

Z cn1n2|n1ng (28)

n|=n9

where we introduced the Slater determinant

n1ng) = Noyng K Kog | HF) | (29)

and the normalisation

= \/(N — Ny — ng)! | (30)

N'ﬂllﬂgl




III. Standard Hartree-Fock (HF)

The expectation value of the quadupole operator is
given by

(HF|Aas|HF) = 625000N . (31)

The mean field transformation matrix C',,
can be written as a product of two rotations

cosp sing 0\ /1 0 0
Cia = | —sine cose 0 | | 0 costy siny
0 0 1 0 —siny cosy
cos¢ sing cosy sing siny
= | —sino coso cosy coso siny | . (32)
0 —siny cosy




Hamiltonian mean value

(HF|H|HF) = Nelegcos’¢ + ersinpeos?s)

+ egsin®gsin®y — ysin‘peose)] L(33)

where we introduced the following dimensionless
notations




Hamiltonian minima

Spherical minimum

1) ¢=0, ¥v=0, x<e —ep, (35)
Deformed minimum

€1 — €p

X

2)  cos 20 = . =0, yY>e —e€.

(36)

Moreover, our calculations have shown that for any
ME minimum one obtains @) = 0, independent of which
kind of vacuum (correlated or not) we use to estimate
the expectation values.




Vacuum state is the Hartree-Fock ground state

Standard RPA

0) = |HF) . (37)

We fix the origin of the particle spectrum with ey = 0.
Then for a spherical vacuum ¢ = 0 the RPA en-

crgies are given by

1/2
) V=1:2:



If Ae = €9 —€; = 0, for the values of the strength v >
1, in the deformed region, i.c. with ¢ # 0 given by
HE minimum, one obtains a Goldstone mode.

In this case by considering e; = 1 one obtains for the
excitation energies

W1 = E\/Q(XZ o 1) ?
Wo = 0 .



I1V. Goldstone mode

The commutation relation

\H, L) =0,

can be seen as an
RPA equation with zero energy w=>0

(40)

[H} LU} = wLD . (41)

Thus, SCRPA will exhibit a Goldstone mode, as this
is also the case with standard RPA.

That this property is conserved has already been an-
nounced by Rowe, but never has been explicitly verified.



We have checked that

for an RPA operator restricted to ph and
hp configurations the Goldstone mode does
NOT come at zero energy.

The reason for this is simple: usually a symmetry op-
erator contains also (hh) and (pp) configurations, and
without them, it is atrophiated and SCRPA fails to pro-
duce a zero mode.

In standard RPA this does not matter because hh and
pp configurations decouple. Beyond standard RPA it
maltters and, as we will show,

the inclusion of scattering terms will pro-
duce the Goldstone mode.

This 1s the reason why we think that the above Hamil-
tonian is adequate since it can be studied in the limit
0€ = €9 — €17 — 0 where the spontaneously broken sym-
metry shows up.
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FIG. 1: EXACT SOLUTION
Exact energies versus the strength parameter y.

N =20,e1 =0,e2 = e3 = 1MeV. By dashes are given standard RPA values.
Notice the appearance of a zero mode solution (Goldstone mode) beyond y=1.




SCRPA creation operators

2

QL= (Xy0Q), = YroQu) . (13)

m=>1=(0

are written in terms of the normalized generators
- ~1/2
5Q! =N 124,
- - ~1/2
0Qmi = 6Q! =N 124, (14)

1,0 and 2,0 are particle-hole (ph) terms, while
2,1 is the particle-particle (pp) scattering term.




How to compute one-body densities 7

Let us consider the expansion

N
Z Cﬂlnz A A AO Amn (42)

1=0

ni

To find ¢,,pn,(m) we compute the expectation values
on the correlated vacuum |0) and use the inversion of
the RPA operator.

One finally obtains from (42) a nonlinear system
of equations, determining the normalisation factors

Nio, Nay.



One directly obtains one-body densities

N

(O Amn0) = [y + T2

X |1+ =z + + il
_ 7 (i Yo2) + Sy
(0[Ao0]0) = N — (0[A11[0) — (0] A2]0) .

where




The eigenvalues for the two-dimensional w'? k=1,2 and three dimensional

(3)
Wy,

SPHERICAL REGION

k= 1,2, 3 versions of the SCRPA versus the strength y (first column) in the

spherical region. The particle number is N = 20 and ¢, = n MeV, n =0,1,2. In the

columns 2-4 are given the exact solutions wy , k= 1,2,5. In the last columns are given
sroundstate energies for two-dimensional and three-dimensional SCRPA and exact

values, respectively.

X wh wa ws w&z] méz] m%g} wég} mé?':' Eé?:' Eé.g:' Eéemd}
0.900 | 0.641 | 1.472 | 2.567 | 0.657 | 1.854 | 0.661 | 1.855 | 2.742 |-0.397| -0.399 | -0.361
0.920 | 0.625 | 1.452 | 2.549 | 0.644 | 1.848 | 0.645 | 1.849 | 2.732 |-0.418| -0.420 | -0.379
0.940 | 0.609 | 1.432 | 2.531 | 0.631 | 1.842 | 0.636 | 1.844 | 2.723 |-0.441| -0.443 | -0.398
0.960 | 0.593 | 1.412 | 2.513 | 0.618 | 1.837 | 0.624 | 1.838 | 2.714 |-0.464| -0.467 | -0.418
0.980 | 0.576 | 1.393 | 2.495 | 0.605 | 1.831 | 0.612 | 1.832 | 2.707 |-0.489| -0.491 | -0.439
1.000| 0.559 | 1.374 | 2.476 | 0.593 | 1.825 | 0.600 | 1.827 | 2.700 |-0.514| -0.517 | -0.460
1.020| 0.542 | 1.355 | 2.458 | 0.581 | 1.819 | 0.5858 | 1.821 | 2.694 |-0.540| -0.543 | -0.483
1.040| 0.525 | 1.336 | 2.439 | 0.570 | 1.814 | 0.577 | 1.815 | 2.689 |-0.568| -0.571 | -0.506
1.060 | 0.508 | 1.318 | 2.421 | 0.559 | 1.808 | 0.567 | 1.810 | 2.685 [-0.596| -0.599 | -0.529
1.030| 0.491 | 1.300 | 2.402 | 0.548 | 1.802 | 0.556 | 1.804 | 2.681 |-0.625| -0.628 | -0.554
1.100| 0.474 | 1.283 | 2.384 | 0.537 | 1.796 | 0.546 | 1.798 | 2.679 |-0.655| -0.659 | -0.580
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FIG. 2: SCRPA IN THE SPHERICAL REGION

Fxcitation energies versus the strength parameter y.
N =20 and eo =0, e1 = 1, ez = 2 (dashed lines).

By =olid lines are given the lowest exact eigenvalues and by dot-dashes the standard RPA energies.
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FIG. 3: TRANSITION FROM SPHERICAL TO THE DEFORMED REGION

The SCRPA expectation value of the Hamiltonian versus the angle ¢, for N = 20 and different values of
the strength parameter y (from the top of the figure, v = 0,0.5,....5). By dashes are given the values for the
spherical region and by solid lines for the deformed region.
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FIG. 4: GOLDSTONE MODE

SCRPA excitation energies versus the strength parameter y. for ¥ = 20, Ae = 0,001 MeV (full line).
By dashes are given the lowest exact eigenvalues and by dot-dashes the standard RPA energies. After the phase
transition point y = 1 (standard RPA) and y = 2.1 (SCRPA) a Goldstone mode at zero energy appears.




In a model with a continuously broken symmetry a
clear rotational band structure is revealed.

The exact solution, found by a diagonalisation proce-
dure, has a definite angular momentum projection L.
The expectation value of the L3 operator has integer
values

(Lg)=J=0,1,2,... (45)

The ”rotational bands” with J = 0,1,2, ... are
built on top of the RPA excitations
The exact energies can be written as follows

J(J+1)
oM

where M is the "exact” mass parameter.

(46)

Wy =




SCRPA mass parameter

of the rotational band can be written as follows

M=2L(A-B)L, (47)
where A, B are the SCRPA matrices and

Ly denotes the part with m > ¢ components of the
momentum operator

Lo = i(Ky — K1)
= i [Ag — Agz)sing + (A — Aja)cosd] , (48)

which should be written in terms of normalised
generators Q1 i.e.

Lg=1 ({}, N;f:gsinqb, Né{zcasgf)) , (49)

For the standard RPA case, by using the matrix ele-
ments given by and Nog = N, one obtains an analytical
solution, namely

N(x—1
v Nx-1)
ex(x +1)

(50)
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FIG. 5: STANDARD RPA INERTIAL PARAMETER

versus y (solid line)
the inertial parameter from the exact energy spectrum (dashed line) and their ratio (dot-dashed line) for N = 20.
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FIG. 6: SCRPA INERTIAL PARAMETER

versus y (solid line)
the inertial parameter from the exact energy spectrum (dashed line) and their ratio (dot-dashed line) for v = 20.
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and the exact energies (solid lines) for N = 20. The three levels correspond to J = 1,2, 3.




V1. Conclusions

1. The three-level Lipkin model has the advantage of
allowing for a continuously broken symmetry on
the mean field level with the appearance of a GGold-
stone mode.

2. The RPA operator should contain, in addition to

the usual ph components a,};a,g:, also the so-called anoma-

lous or scattering terms a;al.

3. We also calculated the moment of inertia of the
rotational band which works in SCRPA (with scattering
terms) in a way very analogous to standard RPA. Very
good agreement with the exact solution is found.

4. Therefore the present formulation of SCRPA allows
to mentain all the formal and desirable proper-

ties of standard RPA.
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Shell model plus cluster description of negative parity states in >Po

D. S. Delion,">* R. J. Liotta,* P. Schuck,”® A. Astier,” and M.-G. Porquet’
'“Horia Hulubei” National Institute of Physics and Nuclear Engineering, 407 Atomigtilor, Bucharest-Mdagurele, RO-077125, Romania
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The intraband electromagnetic transitions in *'°Po and 2'°Pb are well described within the shell model
approach. In contrast, similar transitions in 2'*Po are one order of magnitude smaller than the experimental values,
suggesting the existence of an «-cluster component in the structure of this nucleus. To probe this assumption
we introduced Gaussian-like components in the single-particle orbitals. We thus obtained an enhancement of
intraband transitions, as well as a proper description of the absolute a-decay width in >'?Po. We analyzed the
recently measured unnatural parity states /~ in 2'>Po in terms of the collective octupole excitation in 2 Pb coupled
to positive parity states in >'°Pb. They are connected by relatively large dipole transitions to yrast positive natural
parity states. We described E'1 transitions by using the same «-cluster component and an effective neutron dipole
charge e, = —eZ/A. B(E2) values and absolute a-decay width in 2'?Po are simultaneously described within the
shell model plus a cluster component depending upon one free strength parameter.

DOI: 10.1103/PhvsRevC.85.064306 PACS number(s): 21.60.Jz. 23.20.Js. 23.60.4-¢. 27.80.4+-w




3/2/2016 Physics - Viewpoint: Do alpha particles cluster inside heavy nuclei?

PS  PhysTCs ~ =

Viewpoint: Do alpha particles cluster
inside heavy nuclei?

Michael P. Carpenter, Argonne National Laboratory, Argonne, IL 60439, USA
January 25, 2010 - Physics 3,8

MNew excited states have been observed in 22p, that are associated with a

configuration in which an alpha particle is combined with a doubly-magic 2¢pb
core.

212Pg
m\ Q\s\m,_ (s
oy 5 el o @ R
"’—“ 'mz?%ars- & "!? 6 F 1744 4
208ph 4 o T g 7 I'v
4 1132
= **Pb + o
o* [
shell model

|&d Selected for a Viewpoint in Physics week endi
PRL 104, 042701 (2010) PHYSICAL REVIEW LETTERS 29 JANUARY 3010

£
Novel Manifestation of a-Clustering Structures: New “a + 2®Pb”* States
in 212Po Revealed by Their Enhanced E1 Decays

A. Astier, P. Petkov,"* M.-G. Porquet.’ D. S. Delion,™* and P. Schuck’

http:ifphysics.aps.orgfarticles/vi/8 1/6




Nuclear structure in 212Pg

Positive parity states 2+, 4+, 6, 8*
are given by neutron broken pairs

|EIZPD(J'—I-]} — |2]'pr(}—l-} R ZIGPD(g.S.)}

Negative parity states 4, 6, 8
are given by neutron broken pairs
coupled to an octupole state

22Po(17)) = [IF'°Pb(J ™) ® 2'°Pb(37)];- ® 2Po(g.s.))




temperature T [MeV]
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Four-particle co
in strongly coup
fermion systems
Phys. Rev. Lett. 8(
3177 (1998).

Pairing survives at t
equilibrium densit
and a-quarteting C
at about 10% p,
an a-particle g
on the nuc



Single particle wave function

We add to the sp radial wave function a cluster
component for each angular momentum

d(r) = o7 (r) + ).
Cluster component

is given by Gaussian-like sp wave function peaked on the
nuclear surface r

M(CEHS) e_BE(T_T[})Q/Q

&
A
S
=
z
—_
~—
|




Mean field with surface a-clustering
explains decay width between g
states

*
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Surface a-clustering term with
amplitude = 0.3
explains large electromagnetic
transitions in ?212Po
B(E2:J+2->J)-values

J =7 210pg B(E2),, 210pp B(E2),, 22pg B(E2),,
B(EZ)EXP B(EZ)E,LP B(E2)B,q,
2 =10 0.56(12) 6.7 1.4(4) 39 9.2
4 2 4.6(2) 12.9 3.2(7) 3.5 20.8
6 — 4 3.0(1) 8.9 2.2(3) 2.4 13.5(36) 14.4
8—=6 1.18(3) 39 0.62(5) 1.0 4.60(9) 5.8
B(E1:I>J*)-values \ -
I JH Eusu E(*"Po(17)) Eerp(*'*Po(17)) B(EL);, B(ED)) B(E 1)y
(MeV) (MeV) (MeV) (10* W) (10* W.u.) (10* W.u.)
2- 2+ —0.407 1.236 5 1
4+ —0.204 1.907 15 63
4- 4+ —0.303 1.808 1.744 9 11 25
6" —0.107 2.201 1.946 2 4 11
6~ 6" —0.213 1.886 1.787 37 122 66
8t —0.490 2.197 2.016 3 8 19
8- 6t —0.489 1.816 1.751 43 148 200
8t —0.215 2.240 1.986 8 24

10~ 8+ —0.360 2.135 2.465 2 1 18




Microscopic description

PHYSICAL REVIEW C 107, 024302 (2023)

Cluster mean-field description of « emission

A. Dumitrescu®** and D. §. Delion'-**
U Horia Hulidei” National Institute of Physics and Nuclear Engineering, 30 Reactorului, POB MG-6,
RO-077125 Bucharest-Magirele, Romdnia
“Academy of Romanian Scientists, 3 Hov RO-050044 Bucharest, Romdnia
*Depariment of Physics, University of Bucharest, 405 Atomistilor, POB MG-11, RO-077125 Bucha rest-Mdgurele. Romdnia
*Bioterra University, 81 Gdrlei, RO-013724 Bucharest, Romdnia
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We show that the Hartree-Fock-Bogoliubov (HFB) method is able to describe experimental values of o
decay widths by including a residual nucleon-nucleon swface Gaussian interaction (SGI1) within the standard
procedure used to calculate the nuclear mean field. We call this method the cluster HFB (CHFB ) approach.
In this way we correct the deficient asymptotic behavior of the corresponding single-particle wave functions
generated by the standard mean field. The corrected mean field becomes a sum between the standard mean
Woods-Saxon—like field and a cluster Gaussian component centered at the same radius as the SGL Thus, we
give a confirmation of the mean field plus cluster potential structure, which was assumed in our previous
work on g-decay widths. Systematic calculations evidence the linear correlation between the SGI strength and
fragmentation potential, allowing for reliable predictions concerning the half-lives of superheavy emitters.
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Surface Gaussian Interaction (SGI)
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FI1G. 1. Proton HFB mean field plus 3Gl interaction (dashed line)
and WS plus SGI potential (solid line) in the case of **Pu.




Decay systematics
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FIG. 6. Residual interaction strength (a) and ¢-decay spectro-
copic factor (b) versus the fragmentation potential.




Conclusions

Absolute decay widths and electromagnetic transitions
can be described microscopically by using a mixed
single particle basis, containing additional clustering components
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