

Three-body contact of the resonant Fermi gas

Xavier Leyronas, LPENS Félix Werner, LKB-ENS

Conference in memory of P. Schuck, March 23rd 2023

F. Werner and XL, arXiv:2211.09765 (submitted to Comptes rendus de l'Académie des sciences).

Xavier Leyronas

Three-body contact

Outline

- 2 Results for three-body contact in non-degenerate regime
- 3 Three-body contact and three-body losses
- 4 Conclusion-projects

2 Results for three-body contact in non-degenerate regime

3 Three-body contact and three-body losses

System: Ultracold spin 1/2 interacting Fermi gases (BEC-BCS crossover)

Jacobi coordinates:

 $\mathbf{R} = (\mathbf{r}, \rho)$ is hyperradius (6D)

System: Ultracold spin 1/2 interacting Fermi gases (BEC-BCS crossover)

• Number of triplets $\uparrow \uparrow \downarrow$ (•••) in $R < \epsilon$

• Jacobi coordinates:

 $\mathbf{R} = (\mathbf{r}, \rho)$ is hyperradius (6D)

Definition
$N_3(\epsilon) \underset{\epsilon o 0}{\sim} C_3 \epsilon^{2s+2}$
C_3 is three-body contact. s = 1.772724267: Efimov-like exponent for the 3-body problem for $l = 1$.

System: Ultracold spin 1/2 interacting Fermi gases (BEC-BCS crossover)

• Number of triplets $\uparrow \uparrow \downarrow$ (•••) in $R < \epsilon$

• Jacobi coordinates:

 $\mathbf{R} = (\mathbf{r}, \rho)$ is hyperradius (6D)

Definition $N_3(\epsilon) \underset{\epsilon \to 0}{\sim} C_3 \epsilon^{2s+2}$ C_3 is three-body contact. s = 1.772724267...: Efimov-like exponent for the 3-body problem for l = 1.

Analogous to number of pairs $\uparrow\downarrow$ (••) in $r < \epsilon : N_2(\epsilon) \underset{\epsilon \to 0}{\sim} C_2 \frac{\epsilon}{4\pi}$ C_2 is Tan's (two-body) contact.

Like Tan's contact C_2 , C_3 is due to *interactions*.

No interaction: $N_2^{(0)}(\epsilon) \propto \epsilon^3$, $N_3^{(0)}(\epsilon) \propto \epsilon^8$.

 N_2 and N_3 are enhanced \Rightarrow Bunching effect.

Like Tan's contact C_2 , C_3 is due to *interactions*.

No interaction: $N_2^{(0)}(\epsilon) \propto \epsilon^3$, $N_3^{(0)}(\epsilon) \propto \epsilon^8$.

 N_2 and N_3 are enhanced \Rightarrow Bunching effect.

Zero range attractive interactions (scattering length *a*): short range behavior of many-body wavefunction

2 or 3 particles close $(r_{12}, R \ll |a| \operatorname{or} (m|E|)^{-1/2})$:

V. Efimov 1970; D. Petrov, C. Salomon, G. Shlyapnikov 2004; S. Tan 2004.

$$\Psi(1,2,\cdots) \simeq_{r_{12}\to 0} \boxed{\frac{1}{r_{12}}} \times A(\cdots) \Rightarrow N_2(\epsilon) \sim_{\epsilon\to 0} \epsilon$$

Like Tan's contact C_2 , C_3 is due to *interactions*.

No interaction: $N_2^{(0)}(\epsilon) \propto \epsilon^3$, $N_3^{(0)}(\epsilon) \propto \epsilon^8$.

 N_2 and N_3 are enhanced \Rightarrow Bunching effect.

Zero range attractive interactions (scattering length *a*): short range behavior of many-body wavefunction

2 or 3 particles close $(r_{12}, R \ll |a| \operatorname{or} (m|E|)^{-1/2})$:

V. Efimov 1970; D. Petrov, C. Salomon, G. Shlyapnikov 2004; S. Tan 2004.

$$\Psi(1,2,\cdots) \underset{r_{12}\to 0}{\simeq} \boxed{\frac{1}{r_{12}}} \times A(\cdots) \Rightarrow N_2(\epsilon) \underset{\epsilon\to 0}{\sim} \epsilon$$
$$\Psi(1,2,3\cdots) \underset{R\to 0}{\propto} \boxed{\mathbb{R}^{s-2}} \times \left(\sum_{m=-1}^{1} \Phi_m(\mathbf{\Omega}) B_m(\cdots)\right) \Rightarrow N_3(\epsilon) \underset{\epsilon\to 0}{\sim} \epsilon^{2s+2}$$

Momentum distribution: $N_{\sigma}(\mathbf{k}) \sim \frac{C_2}{k \to +\infty} \frac{1}{k^4}$ S. Tan 2005, 1D: M. Olchanyi, V. Dunjko 2003

Number of pairs of opposite spin particles at a distance $< \epsilon$ of c.o.m. momentum **K**:

Property

$$\begin{split} & N_2(\epsilon,\mathbf{K}) \underset{\epsilon \to 0}{\sim} \frac{\epsilon}{4\pi} N_P(\mathbf{K}) \\ & N_P(\mathbf{K}) \underset{K \to +\infty}{\sim} \frac{C_3}{K^{2s+4}} \times (\textit{constant}). \end{split}$$

Xavier Leyronas

2 Results for three-body contact in non-degenerate regime

3 Three-body contact and three-body losses

Non degenerate regime

$$n_\sigma \Lambda_T^3 \ll 1$$
, $\Lambda_T = \sqrt{rac{2\pi \hbar^2}{m\,k\,T}}$ thermal wavelength: virial-like expansion

Virial expansion of three-body contact

$$\mathcal{C}_3 \underset{n_\sigma \Lambda_T^3 \to 0}{\sim} n^3 \left(\frac{\hbar^2}{mk_B T} \right)^{2-s} f\left(\frac{\lambda_T}{a} \right)$$

Non degenerate regime

$$n_\sigma\,\Lambda_T^3\ll 1$$
, $\Lambda_T=\sqrt{rac{2\pi\hbar^2}{m\,k\,T}}$ thermal wavelength: virial-like expansion

Virial expansion of three-body contact

$$\mathcal{C}_3 \underset{n_\sigma \Lambda_T^3 \to 0}{\sim} n^3 \left(\frac{\hbar^2}{mk_B T} \right)^{2-s} f\left(\frac{\lambda_T}{a} \right)$$

Results :

Unitary limit: exact result (3-body problem) $f(0) = \frac{9\sqrt{3} \pi^3}{2^{2s+1} \Gamma(s+2)}$ Non degenerate regime, two approaches:

Wave-function: (Unitary Limit)

UL : separability

 $\psi(\mathbf{R}) = rac{F(R)}{R^2} \phi(\mathbf{\Omega})$

exact results for F and ϕ .

 $F(R) \underset{R \to 0}{\sim} const R^{s}$

Non degenerate regime, two approaches:

Green's functions: 3-body correlation function

- Wave-function: (Unitary Limit)
- UL : separability
- $\psi(\mathbf{R}) = rac{F(R)}{R^2} \phi(\mathbf{\Omega})$
- exact results for F and ϕ .

 $F(R) \underset{R \to 0}{\sim} const R^{s}$

$$g_{3}(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}) = \langle \psi_{\uparrow}^{\dagger}(\mathbf{r}_{1})\psi_{\uparrow}^{\dagger}(\mathbf{r}_{2})\psi_{\downarrow}^{\dagger}(\mathbf{r}_{3})\psi_{\downarrow}(\mathbf{r}_{3})\psi_{\uparrow}(\mathbf{r}_{2})\psi_{\uparrow}(\mathbf{r}_{1})\rangle$$

is FT of equal-time 3-body propagator

Non degenerate regime, two approaches:

Green's functions: 3-body correlation function

- Wave-function: (Unitary Limit)
- UL : separability
- $\psi(\mathbf{R}) = rac{F(R)}{R^2} \phi(\mathbf{\Omega})$
- exact results for F and ϕ .

 $F(R) \underset{R \to 0}{\sim} const R^{s}$

$$g_{3}(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}) = \langle \psi^{\dagger}_{\uparrow}(\mathbf{r}_{1})\psi^{\dagger}_{\uparrow}(\mathbf{r}_{2})\psi^{\dagger}_{\downarrow}(\mathbf{r}_{3})\psi_{\downarrow}(\mathbf{r}_{3})\psi_{\uparrow}(\mathbf{r}_{2})\psi_{\uparrow}(\mathbf{r}_{1})\rangle$$

is FT of equal-time 3-body propagator (virial expansion with diagrams: XL 2011)

$$\Im(t_3^{l=1}(k,k')) \mathop{\sim}\limits_{k,\,k'
ightarrow+\infty} \, rac{B(E,a^{-1})}{(k\,k')^{s+1}}$$

2 Results for three-body contact in non-degenerate regime

3 Three-body contact and three-body losses

Three-body contact and three-body losses

System:

spin 1/2 (• •) fermions @ ultralow T (*e. g.* ⁶Li).

Three-body recombination \implies losses

Three-body contact and three-body losses

System:

spin 1/2 (• •) fermions @ ultralow T (*e. g.* ⁶Li).

Three-body recombination \implies losses Three-body loss rate Γ_3 (s⁻¹) for bosons: F. Werner, D. Petrov 2013; exp.: C. Salomon, F. Chevy group 2013

Three-body contact and three-body losses

System:

spin 1/2 (• •) fermions @ ultralow T (*e. g.* ⁶Li).

Property

$$\Gamma_3 = -rac{\hbar}{m}$$
4 s(s + 1)Im[a_3] C_3 \propto C_3

a₃: "three-body parameter" for short-range physics $\Psi(\mathbf{R}, \cdots) \underset{R \to 0}{\sim} \sum_{m=-1}^{1} (R^{s} - \mathbf{a}_{3} R^{-s}) \frac{1}{R^{2}} \Phi_{m}(\mathbf{\Omega}) B(\cdots)$

Xavier Leyronas

11/14

2 Results for three-body contact in non-degenerate regime

3 Three-body contact and three-body losses

- three-body contact: new observable, anologous to two-body Tan's contact, but for three-body correlations.
- analogous relations for short-range correlations $N_3(\epsilon)$, high-momentum tails of close pairs has $K^{-7.5454...}$ behavior.
- lowest order virial expansion of C_3 . This could be used has a calibration to measure C_3 , through three-body losses, at any T.
- *j*-particle contact ?

Derivative of the energy with respect to the three-body parameter a_3

Property

$$\left.\frac{\partial E}{\partial a_3}\right|_a = \frac{\hbar^2}{m} 2\,s(s+1)\,C_3.$$