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- Pairing interaction induced by the exchange of collective vibrations

- Two-particle transfer and the Josephson effect
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Pairing matrix elements and pairing gaps with bare, effective, and induced interactions
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Ricardo Americo Broglia (1939-2022)

& STAMPA o CONDIVIDI % LINK

We started working with Ricardo in 1983- 1984, when we
went to Copenhagen after our master’s degree, and we have
collaborated with him without interruption until his death on
October 4th, 2022. In the following, we provide an outline of
his scientific activity. This is not an easy task, because
Ricardo coauthored around 500 papers, collaborating with
around 150 theorists and with many experimentalists as
well. A comprehensive curriculum can be found at the
following link: https://home. mi.infn.it/broglia_CV.pdf

Ricardo Americo Broglia was born in Cordoba, Argentina, in
1939. He started his Master studies at Instituto Balseiro of the
University of Cuyo in Bariloche and then went to Buenos
Aires to pursue his Ph.D. under the supervision of Daniel R.
Bés. This is how he later recollected those years:
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Mean field calculation with low-momentum 2N and 3N
interactions: 3-body force reduces the pairing gaps
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T. Lesinski, K. Hebeler, T. Duguet, A.Schwenk, J. Phys. G 39 (2012) 015108




NFT has been mostly used in normal nuclei.
Extension to superfluid, spherical nuclei within the Nambu-Gor’ kov formalism

(cf. Van der Sluys et al., NPA551(1993)210)

By extending the Dyson equation...
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to the case of superfluid nuclei (Nambu-Gor’ kov), it is possible to consider both
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Renormalization of BCS quasiparticle energies and pairing gap

A. Idini et al., PRC 85 (2012) 014331
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Generalized Gap Equation (schematic)
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Renormalization of BCS pairing gap for states close to the
Fermi energy (single node approximation, SLy4 mean field )
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Experimental phonons were used for natural parity modes with A=2,3,4,5
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Many-Body Perturbation Theory
Holt, Menendez,Schwenk, J. Phys. G 40 (2013) 0751056
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FIG. 3. (Color online) Three-point mass differences A in the calcium isotopes calculated to third order in MBPT with and
without the leading chiral 3N forces, and in comparison with experiment [24, 67]. The legend is as in Fig. 1. Panel (a) shows
the results of the third-order ladder contributions. Panels (b) and (c) include all MBPT diagrams to third order in the pf-shell
and the extended pfgo /2 valence space, respectively. The results in the pf-shell are with empirical SPEs. For the pfgo,2 space,

we show pairing gaps for both the MBPT and empirical SPEs.

When particle-hole contributions are included in a full
third-order calculation, we find in Fig. 3 a clear improve-
ment compared to including only ladder diagrams. In the
pf-shell, the three-point mass differences are increased,
leading to reasonable agreement with experimental data.
This clearly demonstrates the importance of particle-hole
many-body processes, such as core-polarization, on pair-

ing in nuclei. Our results show that they can provide the
missing pairing strength required to reproduce experi-
ment on top of the direct NN+3N interactions. Analo-
gously, the systematic differences between theoretical and
experimental pairing gaps found in the EDF approach of
Ref. [15] may be attributed to these effects.
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Many-body correlations in nuclear superfluidity

Elena Litvinova':%3 and Peter Schuck*>

AV)
A= —szvlmz—Ez, (66)
where the bar denotes the conjugate or the time-reversed state [7] and the interaction matrix elements read
1 1 .
Viory = 1 Z 81234K3412(2A) = 2 [Kl(gi,z, + Kl(z)m, (2)»)]- (67)
34

The integral part of the gap Eq. (66), thus, contains all the microscopic effects of the kernel K “on shell,” regardless of the
approximations made for its static K© and dynamical K parts.
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Gorkov algebraic diagrammatic construction formalism at third order
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Local approximation
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Microscopic justification of surface peaked,
density-dependent pairing force

A. Pastore et al., Phys. Rev. C78 (2008) 024315
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One of the basic questions about nuclear pairing is the role of induced interactions

in the effective pairing interaction [5,54—57]. Indirect information about this can

in principle be obtained by exhibiting the density dependence and the isospin

dependence of the effective interaction. It is therefore of interest to examine

interactions including a density dependence to see the sensitivity.

The rms residual for the neutron OES with volume, mixed, and surface pairing

in HF+BCS theory are shown in Table IV. There is a slight favoring of the surface interaction,
but we deem that the difference in the residuals (10%) is too slight to be significant.

The weak sensitivity to the density dependence confirms the results of other studies [10,58].
G.F. Bertsch et al., PRC 79 (2009) 034306

Binding energies do not provide a clean measure of pairing correlations since they

have contributions which are not directly related to them. These include the impact

of (quasi)particle-vibrational coupling on the binding energies of odd-mass nuclei. The inclusion
of particle-vibrational coupling increases the accuracy of the description of the single-particle
configurations in odd-4 nuclei but such studies are limited to spherical nuclei (see Refs. [76,77)
It is interesting that such features have already been mentioned in seminal article

of Decharge and Gogny [78] where they indicated that treating explicitly the residual

interaction through configuration mixing in odd and even nuclei is expected to lower the

OES by approximately 300 keV in the Sn isotopes.
S. Teeti and A.V. Afanasjev, Phys. Rev. C 103 (2021) 034310




Peter Schuck 3 May 2016 at 14:49
screening
To: enrico.vigezzi@mi.infn.it

Dear Enrico,

Umberto Lombardo is in Orsay and we are discussing screening of the pairing interaction in the different channels (in infinite matter). In this respect | have a question: in
finite nuclei, did you ever consider screening in the p-n S=1, T=0, ie deuteron, channel ? | mean vibration renormalisation in this channel ?

Would be interesting and would specifically interest me.

Hope you are fine.

Best regards,

Peter.



-The Josephson effect and two-nucleon transfer reactions




Josephson Junction in Condensed Matter
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Josephson effect

Microwave radiation

insulating layer
%/_7;(& width d

Pret?r ~d< ¢
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quantum 2-level system

@ Josephson junction: 2 superconductors separated by an insulating
barrier of width d.

@ When a constant potential (battery) V is applied, an alternating
current (ac) of frequency v, = 2eV//h is induced, and the
corresponding radiation is emitted.

@ The charge carriers are Cooper pairs tunneling through the insulating




Josephson effect |

Microwave radiation
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E}/ﬁff(()f width d
(I)Reid)ﬂ
< R 2eV- R
(I)LCY'OL

(DLew" —d < E 0 L

i
'
\"

o If d <&, the Josephson current is /; ~ Iy, where Iy is the normal
(single-electron) current.

quantum 2-level system

@ The correlation length can be estimated to be
¢ = hve/(Am) ~ 10*A, vk = Fermi velocity.

The supercurrent vanishes and only a direct (dc) normal current Iy of
single electron carriers flows.




The Legnaro experiment

week ending

PRL 113, 052501 (2014) PHYSICAL REVIEW LETTERS I AUGUST 2014

Neutron Pair Transfer in °Ni + 1Sn Far below the Coulomb Barrier

D. Montanari,' L. _Corradi,2 S. Szilner,’ G. l?ollarolo,4 E. Fioretto,” G. Montagnoli.l E. Scarlassara,’ A. M. Stefanini,”
S. Courtin,” A. Goasduff,”® F. Haas,” D. Jelavi¢ Malenica,’ C. Michelagn()li.2 T Mijatovié.3 N. Soi¢,’
C.A. Ur,' and M. Varga Pajllcr7

collision between 2 superfluid nuclei V(r)
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1 and 2 neutron transfer
measured for 12 bombarding
107 energies E
the distance of closest
10-4 approach D can be determined
12 16

D [frm] from the bombarding energy E




Can we reproduce the cross sections?

1n transfer

_____ ‘ { _----- 2n transfer
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1n transfer and
2n transfer
cross sections

do /dQ) (mb/sr)
do /dQ) (mb/sr)
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well reproduced
E,.,=452.49 MeV (E,,;=154.26 MeV) Ea.=465.32 MeV (E,=158.63Mev)  fOI all ene rgies
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cross sections measured at 140°

o1, and oy, are calculated for the reaction between the two superfluid
nuclei 119Sn and 9ONi. J




Is there a nuclear Josephson effect?

@ Neutrons have effective charge
Ceff = —e(21 + 22)/(A1 + A2) = —0.44e.

@ An oscillating electric dipole d is induced during the 2n transfer
process.

@ The dipole emits electromagnetic radiation like an antenna during a
very short time 7o ~ 1072 s,




How do we do the calculations?

Cross sections and dipoles |

@ 2-n cross section: oy, — Top, = Zy<¢f|V(f1)|¢7><¢7|v(f2)|¢i>
@ dipole vector: d = Ty = e Z,Y(qbf|v(r1)|¢fy>(f_i + R){d4|v(r)|Pi)
@ 3D projections of d:

di— Ta; = eerr D, {¢r|v(r1)|dy) (r1i + r2i)(dy|v(r2) i)

~ emission strength function J

e amplitude for emission of photon of polarization g in direction 6.:
T96,) = ) Djq(8,) Tas
i

o differential cross section for v emission:

2
d“oy

2
dQ,dE, AE) ((75—7)3) zq: T9(0,)" 6(E — E, — Er + Q)




Is there a nuclear Josephson effect? A prediction

PHYSICAL REVIEW C 103, L021601 (2021)

. p [ letter | | Featured in Physics |
@ centroid: 4 MeV
. . Quantum entanglement in nuclear Cooper-pair tunneling with y rays
@ width: 4 MeV

. G. Potel @ ¥ Barranco,” E. Vigezzi, \and R. A. Broglia**®
ale & . C e , gezzi, 2
@ integral: 5.22 pb/st ~ radiation

@ max. : 1.42 ub/(sr MeV) t’7771 % frf
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nuclear superconducting “circuit” calculated v-strength function

d*o /dEdQ (ub/sr MeV)

@ The Q-value of the reaction acts as a “battery”, providing an
equivalent potential VV.

@ The finite collision time, as well as recoil effects, provides a width
(AE ~ h/Teon)-




Nuclear superconductivity?

PhygTCg VIEWPOINT

The Tiniest Superfluid Circuit in
Nature

A new analysis of heavy-ion collision experiments uncovers evidence that
two colliding nuclei behave like a Josephson junction—a device in which
Cooper pairs tunnel through a barrier between two superfluids.

By Piotr Magierski

Microwave radiation




Velocity of the transferred (nuclear) Cooper pair: Depairing velocity .

E=hv /2 A,
coherence length
of the superfluid

FIG. 5: Supercurrent I (in units of IE]?) vs. superfluid velocity v (in unit of vy,) for various tem-
peratures. From top to bottom: T = (0.1,0.25,0.4,0.5,0.556,0.75,0.9) Y. The curves terminate
at the critical velocities v.(T') appropriate to these temperatures. The maximum supercurrent for
a particular curve determines the value of the critical current at that temperature.

Revisiting the critical velocity of a clean one-dimensional

superconductor
Tzu-Chieh Wei
Institute for Quantum Computing and Department of Physics and Astronomy,

University of Waterloo, Waterloo, ON N2L 3G1, Canada*

Paul M. Goldbart
Department of Physics, Institute for Condensed Matter Theory,
and Federick Seitz Materials Research Laboratory,
University of Hlinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A.
(Dated: April 15, 2009)



Extension of the Cooper pair in an isolated nucleus
. almost the same for different forces.
It is constrained by the nuclear mean and field is much smaller than

the nuclear matter estimate h vg /4 (~ 20 fm)
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M. Matsuo, Phys. Rev. C56 (2007) 3054
N. Pillet, N. Sandulescu, P. Schuck, Phys. Rev. C76 (2007)24310
K. Hagino, H. Sagawa, J. Carbonell, P. Schuck, PRL 99 (2007)22506




The nucleon pair is transferred due to the mean field acting twice.

The amplitude due to the action of the pairing force is about one order

of magnitude weaker
D.R. Bes and O. Civitarese, Nucl. Phys. A 983 (2019) 53

Coherence length during the reaction: possibly, a somewhat
different concept

The two nucleons remain correlated even when they are separated
by the distance of closest approach

13.49 fm
w=2.24f

ONi

4.7 fm




PIAVE-ALPI ACCELERATOR

Search for a Josephson-like effect in the ''°Sn+°‘Ni system
PRISMA + AGATA experiment
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