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• I met Peter for the first time at the
beginning of the 2000’s in one of the
SNNS meetings organized here in
Orsay, maybe in the one of photo, and
saw him for the last time in Catania in
October/November 2019

• In these almost 20 years I had the
chance to meet him in many other
meetings but, unfortunately, not the
one to work and collaborate with him

SNNS, IPN Orsay 2006



This work in few words

Based on: I.V.  NPA 1032, 122625 (2023)

• We employ a feed-forward ANN to extrapolate at large model spaces the results of ab-
initio hypernuclear NCSM calculations for the L separation energy BL of the lightest
hypernuclei, obtained in accessible HO basis spaces using chiral NN, NNN & YN
interactions

• Our results are in excellent agreement with those obtained using other extrapolation schemes of
hypernuclear NCSM calculations, showing this that ANN is a reliable extrapolation method



Machine Learning
Machine Learning is a branch of Artificial Intelligence whose scope is to devise algorithms able to recognize
patterns in previously unseen data without any explicit instructions by an external party. Different types of ML
include

Known input-output (feature-label) relations are given to the machine
learning algorithm to trained it and infer a mapping therefrom. Once the
model is trained based on the known data, one can use unknown data into the
model to get predictions. Used for Classification & Regression problems

§ Supervised Learning

§ Unsupervised Learning

The output of the input training data is unknown. The input data is fed to the
Machine Learning algorithm and is used to train the model which then is
employed to search for patterns in the data. Used for Clustering &
Generation problems

§ Reinforced learning
Given a framework of rules and goals, an agent (algorithm) learns in an
interactive environment by trial and error using feedback from its own
actions and experiences and it gets rewarded or punished depending on which
strategy it uses. Each reward reinforces the current strategy, while punishment
leads to an adaptation of its policy. Example: games such as Chess or Go



Machine Learning in Physics
Machine Learning has been applied in different areas of physics that include among others:

Ø Condense matter

Ø Statistical physics

Ø Cold atoms

Ø Quantum many-body
theory

Ø Quantum computing

Ø Cosmology

Ø Particle physics

Ø Nuclear physics

Ø …

A spectacular increase of the number of publications related with
AI or ML is observed in physical sciences in the last years



Machine Learning Applications  in Nuclear Theory
Since the pioneering work of Gazula et al., NPA 540 1 (1992), who employed a feed forward neural
network to study global nuclear properties across the nuclear landscape, Machine Learning has been
used to predict

Ø Nuclear masses & charge radii
Ø a- & b-decay half-lives
Ø Fission yields
Ø Fusion reaction cross sections
Ø Isotropic cross-sections in proton-induced spallation reactions
Ø Ground and excited state energies
Ø Dripline locations
Ø The deuteron properties
Ø Proton radius
Ø Liquid-gas phase transition
Ø Nuclear energy density functionals
Ø Neutron star EoS
Ø The nucleon axial form factor from neutrino scattering
Ø Extrapolation of A-body results with ANN
Ø …

2003 2020

Number of nuclear theory ML papers



Recently, ANN have been employed to extrapolate the results of ab-initio nuclear structure calculations in finite
model spaces. Particularly:
• Negoita et al., PRC 99, 054308 (2019) have used a feed-forward
ANN method for predicting the ground state energy and the
ground state point proton root-mean-squared radius of 6Li
training the network with NCSM results, obtained in accessible
harmonic oscillator (HO) basis spaces. They showed that an ANN is
able to predict correctly extrapolations of the NCSM results to very
large model spaces of size Nmax ∼ 100.

• Similarly, Jiang et al., PRC 100, 054326 (2019) have also
employed an ANN to extrapolate the ground state energy and
radii of 4He, 6Li & 16O computed with the NCSM and the
coupled-cluster (CC) methods.

4He with NCSM+NNLOopt

16O with CC+NNLOopt

Machine Learning Applications  in Nuclear Theory

Here we follow the work of these authors, to extrapolate at large model spaces the results of ab-initio hypernuclear NCSM calculations for the
L separation energy BL of the lightest hypernuclei



Machine Learning Process: General Scheme

PHASE 1: TRAINING (LEARNING)

PHASE 2: PREDICTION

The task ofmaking a machine to learn is made of 2 phases



Feed-forward Artificial Neural Networks
• ANNs consist of a series of layers (input, hidden & output) each one
contained a certain number of interconnected neurons

Architecture of our ANN. The input data are the HO
spacings hw and the maximum number of basis states Nmax
employed in hypernuclear NCSM calculations, whereas the
output is the L separation energy

• In a feed-forward ANN, neurons do not form a cycle and the data propagates
sequentially from the input to the output layer through all the hidden layers

• At each one of the Nk neurons i of a given layer k, the set of input data
{𝑎!

(#$%)} from the Nk-1 neurons j of the layer k-1 is transformed into

𝑎!
(#) = 𝑓 $

%&'

('()

𝜔!%
(#)𝑎%

(#)') + 𝑏!
(#)

Ø f 𝑧 : activation function, introduces non-linearities on the
neural network that enable it to capture complex non-linear
relationships in the dataset. In this work we use a sigmoid
activation function 𝑓(z)= 𝑒! + 1 "#

Ø 𝜔*!
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(#): fitting parameters of the ANN. Are the weights of the
connections between the neurons of the two adjacent layers k-1
& k, and the activation offset (bias) of each neuron of the layer
k. The total number of fitting parameters np is
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𝑁# + 1 𝑁#.'Numerical implementation with Python libraries Scikit-
learn & Keras using a TensorFlow backend



The Learning Process of an ANN
The learning (or training) process of an ANN involves the minimization of a loss (also called cost or error)
function (which compares the desired ouput (target) and the predicted one by the ANN) in order to obtain the
optimal set of fitting parameters (weights and biases) 𝑾,𝒃 ≡ 𝝎𝒊𝒋

(𝒌), 𝒃𝒊
(𝒌) of the network.

Choice of the loss function

In general, the choice of the loss function depends on the type of problem one is solving with a neural
network. In this work we are solving a regression-type problem and we chose the mean squared error (MSE), a
common choice for this kind of problems
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• N : number of points used in the minimization procedure

• !𝑦! 𝑾,𝒃 ≡ 𝒂𝒊
(𝑳%𝟏) : prediction of the ANN

• 𝑦! : actual output oof the input data



Gradient Descent
Most of the minimization algorithms employed in ANN are based on the so-called gradient
descent algorithm

Idea: Take repeated steps in the opposite direction of the
gradient since the gradient of a multi-variable function J 𝜽
defines the direction of its maximum increase. One starts with
a guess �⃗�2 and considers the sequence �⃗�', �⃗�-, �⃗�3, ⋯ according to

With this idea in mind the weights 𝝎𝒋𝒌
𝒍 & biases 𝒃𝒋𝒍 of the network are updated at each iteration

according to:

𝜔%#4 → 𝜔%#4 − 𝜂
𝜕𝐿
𝜕𝜔%#4

, 𝑏%4 → 𝑏%4 − 𝜂
𝜕𝐿
𝜕𝑏%4

where h is the so-called learning rate, one of the hyperparameters of the newtwork, that controls
how fast or how slow the network parameters are updated

�⃗�5.' = �⃗�5 − 𝜂∇𝐽 �⃗�5 , with h > 0



The Backpropagation Algorithm

Backpropagation is a method used to calculate in an efficient way
the gradient +,

+-()
* ,
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* of the loss function and adjust the

connection weights & the biases to reduce the error during the
learning process.

§ Input x: set the corresponding activation 𝑎%' = 𝑥% for each neuron j-th of the input layer
§ Feedforward: for each layer 𝑙 = 2, 3,⋯ , 𝐿 compute 𝑧%4 = ∑#𝜔%#4 𝑎#4)' + 𝑏%4 and 𝑎%4 = 𝑓 𝑧%4

§ Output error 𝛿%,: compute the error of each neutron of the last layer L, 𝛿%, =
6,
67+

, 𝑓8 𝑧%, = 6,
6 9:+

𝑓8 𝑧%,

§ Backpropagate the error: for each layer 𝑙 = 𝐿 − 1, 𝐿 − 2,⋯ , 2 compute 𝛿%4 = ∑# 𝛿#4.'𝜔#%4.'𝑓′ 𝑧%4

§ Gradient of the loss function: 6,
6;+'

- = 𝛿%4𝑎#4)' ,
6,
6<+

- = 𝛿%4

§ Update the weights & biases: 𝜔%#4 → 𝜔%#4 − 𝜂 6,
6;+'

- , 𝑏%4 → 𝑏%4 −
6,
6<+

-

§ Repeat till convergence is achieved



Overfitting of an ANN

• A major issue in the development of an ANN is
overfitting (also known as overtraining), which
basically means that the network, due to its high
flexibility to approximate complex non-linear
functions, tries to fit the data entirely and ends up
memorizing all the data patterns.

Underfitting Optimal Overfitting

• Due to overfitting the predictability of the network
on testing data becomes questionable

• Strategies to avoid overfitting include among others:

Ø early stopping of the training: stops the training process once the model performance stops improving on the validation dataset

Ø dropout: reduce overfitting by dropping randomly neurons from the neural network during training in each iteration

• In addition to these which can be used together, overfitting can be reduced by:
Ø enlarging the input dataset (specially in those case where the input dataset is not large enough)
Ø adding noise to the input dataset making the network less able to memorize data patterns since they change randomly during

the training



Input Dataset
We employ as input dataset the hypernuclear NCSM results of Gazda et al. (PRC 97 (2018) 064315, Few-Body Syst.
62 (2021) 94) for the L separation energy of 3

LH, 4
LH & 4LHe obtained with chiral NN & NNN interactions at N3LO

and N2LO, respectively both with a regulator cutoff of 500 MeV, and YN potentials at LO with a cutoff of 600 MeV

• Due to the small size of the original input dataset to avoid overfitting we have:

Ø enlarged it by performing a cubic interpolation in the HO spacing ℏ𝜔 at each given value of Nmax
Ø introduced a Gaussian noise in the enlarged input dataset during the training of the network

• We use the 80% (10 % of it used for validation) of the enlarged input dataset to train the network and leave the
20% of it for testing



Performance of the ANN

To illustrate the performance of the network we show
the loss function 𝐿 𝑾, 𝒃 of the training & test
datasets as a function of the number of iterations in
the calculation of the L separation energy of the
ground state of /3H

• Very fast decrease during the first 500
iterations becoming (on average) essentially
constant at about 1000 iterations and above it

• The loss function of the test dataset is smaller
that that of the training one, indicating that
overfitting has been substantially reduced

• Similar good performance for /=H and /=He



• A typical run of an ANN starts with random values of the
weights & biases of the network.

A General Comment

• The random inizialization of the weights & biases is not
accidental but an important feature of the network
training that introduces a certain degree of stochasticity
that reduces the risk that during the optimization process
of the network parameters it gets stuck in a local
minimum

• Consequently, different runs of the ANN lead to slightly
different results as seen in the figure

• Because of this, for each hypernucleus, we have
performed 100 independent runs of the ANN and taken
the average and the standard deviation of all these runs ad
the predictions of the network and their corresponding
error, respectively

Statistical distribution of the results for the L separation energy BL of the ground state of !
"H predicted by 100 independent runs of the ANN for an HO spacing ℏ𝜔= 10 MeV and a 

model space size Nmax = 100. The continuous line shows a Gaussian fit of the histogram. 



L separation energy of the ground state of 3LH 

• Slow convergence due to the
extremely weak binding energy
of >3H

• Considerably reduction of the
BL dependence with ℏ𝜔 with
the increase of Nmax

• Good extrapolation to the
experimental result for large
values of the model space size
Nmax

Open circles in the right panel show the NCSM results used for the training of the ANN 𝐵> >
3𝐻 = 0.16 ± 0.02

ANN prediction for Nmax= 100

MeV



L separation energy of the 0+ & 1+ states of 4LH & 4LHe 

• Faster convergence than in the .
/H

case. Good convergence already for
Nmax ≳ 25

• Well extrapolation of the ANN
prediction for the 0+ state of .

=He to
the experimental value

• ANN prediction for the 0+ & 1+
states of .

=H & 1+ of .
=He off of the

experiment by about 0.3 MeV. This
should not be attributed to the
performance of the ANN but to the
Hamiltonian used & the symmetries
assumed in the NCSM calculations

• Charge symmetry breaking (CSB)
in these two A=4 mirror
hypernuclei not explained because
CSB effects are not included in the
NCSM calculations used to train
the ANN. Therefore, the ANN
cannot account for them

𝐵> >
=𝐻(0.) = 2.49 ± 0.05 MeV

𝐵> >
=𝐻(1.) = 1.35 ± 0.16 MeV

𝐵> >
=𝐻𝑒(0.) = 2.43 ± 0.06 MeV

𝐵> >
=𝐻𝑒(1.) = 1.33 ± 0.11 MeV

ANN prediction for Nmax= 100



To further check the convergence of the extrapolated value of BL for the 0+ &
1+ states of .

0H & .
0He at Nmax=100 we show the statistical distributions of the

results of 100 independent runs of the ANN for several choices of the maximal
value of Nmax taken into account in the training dataset

$
%H

$
%He

• The dispersion of the ANN predictions becomes narrower & narrower
when the maximal value of Nmax included in the training dataset
increases

Convergence of the extrapolated results of the 0+ & 1+ states at Nmax=100

We observe that: 

• Successive extrapolates are consistent consistent with the previous
ones within the given uncertainties

From this one can conclude that the extrapolated values of BL for the two
states of both hypernuclei show a rather well convergence in terms of the
maximal value of Nmax included in the training dataset, being this an indication
that ANN are a reliable method to extrapolate the results of hypernuclear
NCSM calculations to large model spaces



Comparison with other extrapolation schemes

Hypernucleus ANN Prediction Extrapolated results of 
[1] & [2]

Experimental Vaue

>
3H (g.s.) 0.16 ± 0.02 0.158 [1] 0.13 ± 0.05

>
=H(0.) 2.49 ± 0.05 2.48 ± 0.04 [2] 2.157 ± 0.077

>
=H(1+) 1.35 ± 0.16 1.40 ± 0.28 [2] 1.067 ± 0.08

>
=He(0.) 2.43 ± 0.06 2.45 ± 0.04 [2] 2.39 ± 0.05

>
=He(1.) 1.33 ± 0.11 1.34 ± 0.28 [2] 0.984 ± 0.05

The main goal of this work is mainly focused on discerning whether ANN is a reliable scheme to extrapolate NCSM
results at larger model spaces rather than its accuracy on reproducing the experimental results. To such end we compare
our results with the extrapolated ones of Htun et al., FBS 62 (2021) 94 [1] & Wirth et al., PRC 97 (2018) 064315 [2]

As it is seen our results are in excellent agreement with those of Htun et al. & With et al., confirming this that ANN is
a reliable method to extrapolate results of hypernuclear NCSM calculations to large model spaces



Take home message

• We employ a feed-forward ANN to extrapolate at large model spaces the results of ab-initio
hypernuclear NCSM calculations for the L separation energy BL of the lightest hypernuclei, obtained in
accessible HO basis spaces using chiral NN, NNN & YN interactions

• The overfitting problem is avoided by enlarging the size of the input dataset & by introducing a
Gaussian noise during the training process of the neural network

• We find that a network with a single hidden layer of eight neurons is enough to extrapolate correctly
the value of BL to model spaces of size Nmax=100

• Our results are in excellent agreement with those obtained using other extrapolation schemes of
hypernuclear NCSM calculations, showing this that ANN is a reliable extrapolation method

Summary & Conclusions

Future Perspectives

• Compare the ANN results with those obtained with other extrapolation schemes such that of infrared
extrapolation (IR) where the model space parameter ℏ𝜔 & 𝑁?7@ are translated into an IR length scale
𝐿ABB and an ultraviolet (UV) cutoff scale ΛCD

• Analyze the ANN performance, particularly the convergence of the ANN results, on heavier
hypernuclei
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