Higgs boson fiducial cross section measurements in the four-lepton final state

Alessandro Tarabini (LLR, IPP, École Polytechnique)

On behalf of the CMS collaboration

IRN Terascale @ LPSC Grenoble 25/04/2023

Overview

CMS PAS HIG-21-009

New analysis whose aim is a complete characterisation of the Higgs-to-four-lepton channel using fiducial cross section measurements

Overview

CMS PAS HIG-21-009

New analysis whose aim is a complete characterisation of the Higgs-to-four-lepton channel using **fiducial** cross section measurements

Alessandro Tarabini

Overview

CMS PAS HIG-21-009

fiducial cross section measurements

Alessandro Tarabini

Inclusive fiducial cross section

Differ obs
m_{Z1} n
$\cos(\theta_1)$
D^{dec}_{0-} D^{dec}_{CP} D

Double-differential observables

 T_C^{max} vs p_T^H

 m_{Z1} vs m_{Z2}

 N_{jet} vs p_T^H

 $|y_H|$ vs p_T^H

 p_T^H vs p_T^{Hj} p_T^{j1} vs p_T^{j2}

Interpretations

 $k_{\lambda}, k_{c}, k_{b}$

Inclusive fiducial cross section

Differ obs

Double-differential observables

Interpretations

Alessandro Tarabini

Alessandro Tarabini

Inclusive fiducial cross section

Precision @ 10%

40% decrease of the systematic component:

- Latest CMS run 2 objects calibrations
- Revised measurement for the estimation of the electron scale factors uncertainties
- •Electron-related nuisances are the leading contribution to the systematic uncertainty but their value is halved wrt previous run 2 result
- •Systematic component at the same level of the theoretical precision

Differential production observables	Differ obs
$p_T^H y_H p_T^{j1} N_{jets}$	m_{Z1} n
p_T^{Hj} m_{Hjj} p_T^{j2} T_B^{max} T_C^{max}	$\cos(\theta_1)$
p_T^{Hjj} m_{jj} $ \Delta \eta_{jj} $ $ \Delta \phi_{jj} $	D^{dec}_{0-} D^{dec}_{CP} D

Double-differential observables

Interpretations

Quintessential fiducial observables

- •Finer binning wrt previous analyses
- reconstruction
- •Three MC SM benchmarks: **POWHEG**, **NNLOPS**, and **MadGraph**

•Extension of the jet phase space (from $|\eta_{jet}| < 2.5$ to $|\eta_{jet}| < 4.7$) thanks to the improved CMS jet

Differ obs	Differential production observables
m _{Z1} n	
$\cos(\theta_1)$	
D^{dec}_{0-} D^{dec}_{CP} D	

Double-differential observables

Interpretations

Alessandro Tarabini

Probe HZZ vertex via Matrix-Element discriminants sensitive to BSM physics

$$\frac{q_2)^2}{2} + \frac{2q_1 \cdot q_2}{M_{V_1}^2} g_2^{VV} \bigg) (\varepsilon_1 \cdot \varepsilon_2) - 2g_2^{VV} (\varepsilon_1 \cdot q_2) (\varepsilon_2 \cdot q_1) - 2g_4^{VV} \varepsilon_{\varepsilon_1 \varepsilon_2 q_1} \bigg)$$

- The MELA package [1] allows to compute the matrix-element probability for an event to be produced at a particular point of the phase space $-> \mathscr{P}_{SM}$ and \mathscr{P}_{AC}
- By the Neyman-Pearson lemma, the optimal way to distinguish between two hypothesis is the ratio (or a function of the ratio) between the probabilities:

$$\mathcal{D}_{alt} = \frac{\mathcal{P}_{AC}(\vec{\Omega})}{\mathcal{P}_{AC}(\vec{\Omega}) + \mathcal{P}_{SM}(\vec{\Omega})} \quad \mathcal{D}_{interference} = \frac{1}{2\sqrt{2}}$$

Higgs boson differential cross section measurements in the four-leptons final state

Alessandro Tarabini

Probe HZZ vertex via Matrix-Element discriminants sensitive to BSM physics

$$\frac{q_2)^2}{2} + \frac{2q_1 \cdot q_2}{M_{V_1}^2} g_2^{VV} \bigg) (\varepsilon_1 \cdot \varepsilon_2) - 2g_2^{VV} (\varepsilon_1 \cdot q_2) (\varepsilon_2 \cdot q_1) - 2g_4^{VV} \varepsilon_{\varepsilon_1 \varepsilon_2 q_1} \bigg)$$

To use discriminants we have to define two hypotheses **SM Hypothesis** $g_1^{ZZ} = 2$ Alternative hypothesis $g_i^{ZZ} \neq 0$ or $\Lambda_i^{ZZ,Z\gamma} \neq 0$

\longrightarrow					-
$\mathcal{P}_{interference}(\Omega)$	Coupling	g_4^{ZZ}	g_2^{ZZ}	k_1^{ZZ}	
J	Discriminants to	Ndec	Ndec	Ndec	
\longrightarrow \longrightarrow	separate hypothesis	₩0-	$\sim 0h+$	∞Λ1	
$\mathcal{P}_{\Lambda C}(\Omega) \cdot \mathcal{P}_{CM}(\Omega)$	Interference	\mathcal{D}_{dec}	Adec		
AC() = SM()	discriminants	<i>∞ CP</i>	∞ int	-	

Probe HZZ vertex via Matrix-Element discriminants sensitive to BSM physics

Alessandro Tarabini

- criminants we have to define two hypotheses Results for decay observables are presented in **2e2mu** and **4e+4mu** final states as well.
- The same-flavour lepton interference makes the shapes in 2e2mu and compute the probabil4e/4mu final states different duced at a particular
- bint of the phase space $\rightarrow \mathcal{P}_{SM}$ and \mathcal{P}_{AC}
 - ne optimal way to distinguish between two hypothesis is the ratio (or a n of the ratio) between the probabilities:

$\mathcal{P}_{interference}(\vec{\Omega})$	Coupling	g_4^{ZZ}	g_2^{ZZ}	k_1^{ZZ}
$\mathcal{P}_{AC}(\overrightarrow{\Omega}) \cdot \mathcal{P}_{SM}(\overrightarrow{\Omega})$	Discriminants to separate hypothesis	\mathcal{D}_{0-}^{dec}	\mathcal{D}_{0h+}^{dec}	$\mathscr{D}^{dec}_{\Lambda 1}$
	Interference discriminants	\mathcal{D}_{CP}^{dec}	\mathcal{D}_{int}^{dec}	_

Probe HZZ vertex via Matrix-Element discriminants sensitive to BSM physics

Alessandro Tarabini

Differ

Double-differential observables

 T_C^{max} vs p_T^H

 m_{Z1} vs m_{Z2} p_T^H vs p_T^{Hj}

 N_{jet} vs p_T^H

 $|y_H|$ vs p_T^H

 p_T^{j1} vs p_T^{j2}

Interpretations

Double-differential observables

 T_C^{max} vs p_T^H m_{Z1} vs m_{Z2}

Alessandro Tarabini

Differe

Double-differential observables

Interpretations

 k_{λ}, k_c, k_b

Higgs boson trilinear self-coupling

The Higgs boson is the only particle in the SM that can couple with itself.

The measurement of λ_3 is one of the main physics goal of the LHC since it provides a **direct test of the EW symmetry breaking** and it is linked to **fundamental questions** in particle physics and cosmology.

Direct measurement in HH production

- •Rare processes that are experimentally challenging
- •LO dependence on λ_3

Higgs boson differential cross section measurements in the four-leptons final state

First-time

Indirect measurement in H production

- •Benefit from larger XS for single-H production $(\sim 1000 \times \sigma_{HH})$
- •NLO EW dependence on λ_3

Higgs boson trilinear self-coupling

The **transverse momentum** is used to set constraint on $\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$ since it is the most sensitive observable to probe the H boson self-coupling

Alessandro Tarabini

Higgs boson differential cross section measurements in the four-leptons final state

Observed (expected) excluded κ_{λ} range from @ 95% CL: $-5.5 (-7.7) < \kappa_{\lambda} < 15.1 (17.9)$

First time the result is presented in a fiducial analysis of **single-Higgs** production

Higgs boson trilinear self-coupling

The **transverse momentum** is used to set constraint on $\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$ since it is the most sensitive observable to probe the H boson self-coupling

Alessandro Tarabini

Observed (expected) excluded κ_{λ} range from @ 95% CL: $-5.5 (-7.7) < \kappa_{\lambda} < 15.1 (17.9)$

First time the result is presented in a fiducial analysis of **single-Higgs** production

Competitive with many HH analyses (direct search), i.e. **bbZZ**, **bbbb merged**, and **multi-lepton**

Conclusions

- •All results show an overall good agreement with the SM
- •60 fiducial XS results, 33 observables (28 of them are new!), and 3 interpretations make this paper one of the most extensive fiducial analysis ever performed (today shown only a small subset of the results)
- •Better CMS objects calibration and improvements in the analysis strategy led to very precise measurements (~ 10% inclusively)
- •We are on the verge of probing the scalar sector with very high precision

•The analysis provides a comprehensive characterisation of the Higgs-to-four-lepton channel using differential and fiducial cross section measurements and interpretations

Inclusive fiducial cross section

Alessandro Tarabini

Higgs boson differential cross section measurements in the four-leptons final state

Cross section compared to three generators modelling the production

POWHEG

NNLOPS New SM benchmark! MadGraph5_aMC@NLO

25

Inclusive XS with floating ZZ normalisation First-time

- •<u>Standard approach</u>: extract both the shape and the normalisation of the ZZ irreducible background from simulation
- •<u>Alternative strategy</u>: Measuring together the inclusive fiducial cross section and the ZZ normalisation
 - Remove the impact of nuisances on ZZ normalisation
 - Being sensitive to BSM effects in the background

Inclusive XS with floating ZZ normalisation First-time

- •<u>Standard approach</u>: extract both the shape and the normalisation of the ZZ irreducible background from simulation
- •<u>Alternative strategy</u>: Measuring together the inclusive fiducial cross section and the ZZ normalisation
 - Remove the impact of nuisances on ZZ normalisation
 - Being sensitive to BSM effects in the background

$$\sigma^{\text{fid}} = 2.74^{+0.24}_{-0.23} \text{ (stat)}^{+0.14}_{-0.11} \text{ (sys)}$$

$$ZZ_{norm} = 445^{+27}_{-26} (\text{stat})^{+21}_{-19} (\text{sys})$$

Reduction of the systematic component on the XS wrt std approach, but not yet enough number of events to profit from this method differentially

Alessandro Tarabini

Inclusive fiducial cross section

	2e2µ	4μ	4e	Inclusive
$\sigma_{ m fid}$	$1.33^{+0.17}_{-0.16}{ m fb}$	$0.75^{+0.10}_{-0.09}{ m fb}$	$0.59^{+0.13}_{-0.12}{ m fb}$	$2.73^{+0.22}_{-0.22}$ (stat) $^{+0.15}_{-0.14}$ (syst) fb
$\sigma_{ m fid}$	$1.37^{+0.17}_{-0.16}{ m fb}$	$0.75^{+0.10}_{-0.09}{ m fb}$	$0.57^{+0.15}_{-0.12}{ m fb}$	$2.74^{+0.24}_{-0.23}$ (stat) $^{+0.14}_{-0.11}$ (syst) fb
ZZ norm.	193^{+23}_{-21}	162^{+19}_{-18}	92^{+16}_{-13}	445^{+27}_{-26} (stat) $^{+21}_{-19}$ (syst)

28

Correlation matrix for inclusive XS with floating bkg

Alessandro Tarabini

Decay observables

The kinematics of the decay of the H boson in 4 leptons is fully described by the Higgs boson's mass and 7 parameters:

- The two **Z masses** (**Z1** and **Z2**)
- Three angles describing the fermion kinematics $(\Phi, \cos\theta_2, \cos\theta_1)$
- Two angles connecting production to decay $(\Phi_1, \cos\theta^*)$

Alessandro Tarabini

Higgs boson differential cross section measurements in the four-leptons final state

First-time

g(q)

HVV scattering amplitude of a spin-0 boson H and two vector bosons

$$\begin{split} A(HV_{1}V_{2}) = & \frac{1}{v} \left\{ \begin{array}{c} M_{V_{1}}^{2} \left(\overline{g_{1}^{VV}} + \frac{\kappa_{1}^{VV}q_{1}^{2} + \kappa_{2}^{VV}q_{2}^{2}}{\left(\Lambda_{1}^{VV}\right)^{2}} + \frac{\kappa_{3}^{VV}(q_{1} + q_{2})^{2}}{\left(\Lambda_{Q}^{VV}\right)^{2}} + \frac{2q_{1} \cdot q_{2}}{M_{V_{1}}^{2}} \overline{g_{2}^{VV}} \right) (\varepsilon_{1} \cdot \varepsilon_{2}) \\ & - \frac{2g_{2}^{VV}}{2} (\varepsilon_{1} \cdot q_{2})(\varepsilon_{2} \cdot q_{1}) - \frac{2g_{4}^{VV}}{2} \varepsilon_{\varepsilon_{1} \varepsilon_{2} q_{1} q_{2}} \right\} \end{split}$$

CP even

- Tree-level SM g1ZZ = g1WW = 2
- Loop induced SM processes contribute effectively via $g2VV \rightarrow small$

CP odd

• SM processes at three-loop level $g4VV \rightarrow tiny$

$$A(HV_{1}V_{2}) = \frac{1}{v} \left\{ M_{V_{1}}^{2} \left(g_{1}^{VV} + \frac{\kappa_{1}^{VV}q_{1}^{2} + \kappa_{2}^{VV}q_{2}^{2}}{\left(\Lambda_{1}^{VV}\right)^{2}} + \frac{\kappa_{3}^{VV}(q_{1} + q_{2})^{2}}{\left(\Lambda_{Q}^{VV}\right)^{2}} + \frac{2q_{1} \cdot q_{2}}{M_{V_{1}}^{2}}g_{2}^{VV} \right) (\varepsilon_{1} \cdot \varepsilon_{2}) - 2g_{2}^{VV}(\varepsilon_{1} \cdot q_{2})(\varepsilon_{2} \cdot q_{1}) - 2g_{4}^{VV}\varepsilon_{\varepsilon_{1}\varepsilon_{2}}g_{4}^{VV} + \frac{2q_{1} \cdot q_{2}}{M_{V_{1}}^{2}}g_{2}^{VV} \right) (\varepsilon_{1} \cdot \varepsilon_{2}) - 2g_{2}^{VV}(\varepsilon_{1} \cdot q_{2})(\varepsilon_{2} \cdot q_{1}) - 2g_{4}^{VV}\varepsilon_{\varepsilon_{1}\varepsilon_{2}}g_{4}^{VV} + \frac{2q_{1} \cdot q_{2}}{M_{V_{1}}^{2}}g_{2}^{VV} + \frac{2q_{1} \cdot q_{2}}{M_{V_{1}}^{2}}g_{2}^{VV}$$

To use discriminants we have to define two hypotheses

SM Hype Alternative hypo

For each event with measured variables $\overrightarrow{\Omega}$, we have to calculate the probability to produce an event at $\overrightarrow{\Omega}$

$$\begin{split} \mathcal{D}_{alt} &= \frac{\mathcal{P}_{AC}(\vec{\Omega})}{\mathcal{P}_{AC}(\vec{\Omega}) + \mathcal{P}_{SM}(\vec{\Omega})} \\ \mathcal{D}_{interference} &= \frac{\mathcal{P}_{interference}(\vec{\Omega})}{2\sqrt{\mathcal{P}_{AC}(\vec{\Omega}) \cdot \mathcal{P}_{SM}(\vec{\Omega})}} \end{split}$$

Alessandro Tarabini

othesis
$$g_1^{ZZ} = 2$$

othesis $g_i^{ZZ} \neq 0$ or $\Lambda_i^{ZZ} \neq 0$

under the two hypotheses -> \mathscr{P}_{SM} and \mathscr{P}_{AC} (Computed with MELA)

Coupling	g_4^{ZZ}	g_2^{ZZ}	k_1^{ZZ}	$k_2^{Z\gamma}$
Discriminants to separate hypothesis	\mathcal{D}_{0-}^{dec}	\mathcal{D}_{0h+}^{dec}	$\mathscr{D}^{dec}_{\Lambda 1}$	$\mathscr{D}^{Z\gamma,dec}_{\Lambda 1}$
Interference discriminants	\mathcal{D}_{CP}^{dec}	\mathcal{D}_{int}^{dec}	—	_

Rapidity-weighed jet observables

They can be factorised and resummed allowing for precise theory predictions and can be used as a test of **QCD resummation** since their resummation structure is different from p_T^{jet} .

Alessandro Tarabini

Observables defined as the transverse momentum of the jet weighed by a function of its rapidity.

$$= m_T^j e^{-|y_j - Y_H|}$$

Phys.Rev.D 91 (2015) 5, 054023

Rapidity-weighed jet observables

They can be factorised and resummed allowing for precise theory predictions and can be used as a test of **QCD resummation** since their resummation structure is different from p_{τ}^{jet} .

Alessandro Tarabini

Higgs boson differential cross section measurements in the four-leptons final state

Observables defined as the transverse momentum of the jet weighed by a function of its rapidity.

$$= m_T^j e^{-|y_j - Y_H|}$$

c/b quark couplings κ_b, κ_c

Alessandro Tarabini

The ggH transverse momentum is used to set constraint on κ_c/κ_b by using information from both the shape and the variation of the normalisation

Observed (expected) excluded κ_c range from @ 95% CL: $-5.3 (-5.7) < \kappa_c < 5.2 (5.7)$

Observed (expected) excluded κ_b range from @ 95% CL: $-1.1 (-1.3) < \kappa_b < 1.1 (1.2)$

35

c/b quark couplings κ_b, κ_c

Alessandro Tarabini

Freely floating branching ratios

The normalization of the parametrization and coupling dependence of BRs are eliminated, and what remains is purely the constraints from only the shape

		Full Run2 Ultra Legacy Floating kb kc		
		Observed 95% confidence	Expected 95% confidence	
		interval	interval	
Shane Only	$\mathbf{k}_{\mathbf{b}}$	[-5.6, 8.9]	[-5.5, 7.4]	
Shape-Only	k _c	[-20, 23]	[-19, 20]	

Higgs potential

 $V(H) = \frac{1}{2}m_H^2 H^2 + \lambda_3 v H^3 + \frac{1}{4}\lambda_4 H^4 + \mathcal{O}(H^5)$

Alessandro Tarabini

Higgs boson differential cross section measurements in the four-leptons final state

In the SM $\lambda_3 = 4\lambda_4 = \frac{m_H^2}{v^2}$

37

Electron efficiency nuisance

New method to compute uncertainties from T&P measurements for electrons based on RMS

- Scale factors and corresponding uncertainties enter the final result with the power of four -> **Electron reconstruction and selection efficiency** is by far the **leading nuisance** in $H \rightarrow ZZ \rightarrow 4\ell$
- •Computation done with **Tag-and-Probe** (TnP) method
- •Challenge: low-pT electron region (7-20 GeV) where it is hard to distinguish signal from QCD background -> Large systematic uncertainty from this region
- **Current method for sys unc**: Summing in quadrature four variations of the nominal setting
 - •Very sensitive to outliers
 - Adding more variations lead to bigger uncertainty
 - •Correlations not taken into account

•New method for sys unc: Combining the four variations by using the RMS

- •Less sensitive to outliers
- •Adding more variations does not lead to bigger uncertainty
- Reduced uncertainty in the low-pT region (~40% improvement in the precision)

