Study of top-Higgs CP properties in $t\bar{t}H$ and tH events with $H \rightarrow b\bar{b}$ decays in ATLAS

April 2023 IRN Terascale meeting

Timothée Theveneaux-Pelzer

CPPM - CNRS/IN2P3 - Polytech-Marseille - Aix-Marseille Université

Mardi 25 avril 2022

Introduction

Introduction

- With LHC data we (try to) measure the coupling of each SM particle to the Higgs
- top-quark: fermion with the largest coupling to the Higgs boson in the SM
 - $\rightarrow~$ do I need to explain why it matters for BSM searches?

Both CMS and ATLAS observed tt H with LHC run-2 data

- ightarrow cross-section measurements are consistent with SM predictions: $\kappa_t \simeq 1$
- ightarrow we are now performing differential measurements
- ightarrow ...and probing top-Higgs coupling structure
- This talk: ATLAS latest measurements $t\bar{t}H$ measurements in the $H \rightarrow b\bar{b}$ channel
 - ightarrow especially focusing on the CP properties

top-Higgs CP properties: phenomenology

$t(\bar{t})H$ production and decay

- ttH gives a direct access to the amplitude of the top Yukawa
 - ightarrow while loop-induced Higgs production or $H
 ightarrow \gamma\gamma$ are indirect probes
 - \rightarrow prediction (YR4): $\sigma_{t\bar{t}H} = 507.1^{+6.8}_{-9.9}$ fb CERN-2017-002
- tH gives access to the sign of the top Yukawa
 - $ightarrow\,$ i.e. relative sign between top-Higgs and W-Higgs couplings
 - \rightarrow prediction (YR4): $\sigma_{tH} = 74.3^{+7.5}_{-15.4}$ fb for t-channel (main production mode)

- Will focus in this talk on $H
 ightarrow b ar{b}$ Higgs decay channel
 - ightarrow largest branching ratio larger statistics good for differential measurements
 - \rightarrow caveat: dominant $t\bar{t}b\bar{b}$ background is very challenging

tTH CP-odd and CP-even

• In the SM, $t\bar{t}H$ is handled by this term in the Lagrangian:

$$\mathcal{L}_{t\bar{t}H}^{SM} = -y_t \phi \bar{\psi}_t \psi_t$$

- $ightarrow y_t = m_t / v$ is the top Yukawa coupling
- ightarrow the produced top quark and anti-quark have the same chirality
- BSM physics may give a different coupling value:

$$\mathcal{L}_{t\bar{t}H} = -\kappa_t \, y_t \, \phi \, \bar{\psi}_t \, \psi_t$$

- \rightarrow parametrised with the coupling modifier κ_t
- ightarrow this term is still CP-even: same coupling for the left- and right-handed $tar{t}$
- Even more BSM: introducing a CP-odd term in the Lagrangian

$$\mathcal{L}'_{t\bar{t}H} = -y_t \phi \bar{\psi}_t (\kappa_t + i\gamma_5 \,\tilde{\kappa}_t) \psi_t = -\kappa'_t y_t \phi \bar{\psi}_t (\cos\alpha + i\gamma_5 \sin\alpha) \psi_t$$

- \rightarrow pure CP-odd ($\alpha = 90^{\circ}$): left- and right-handed $t\bar{t}$ have opposite couplings
- ightarrow nature may allow a CP-even/CP-odd admixture with lpha at any value \Rightarrow CP violation

top-Higgs CP properties: phenomenology

Effect of CP-odd coupling on $t\bar{t}H$ and tH cross-sections

- Introducing a CP-odd term affects the $t\bar{t}H$ cross-section
 - $ightarrow\,$ largest effect for pure CP-odd case $lpha=90^\circ$
 - \rightarrow symmetric effect wrt. $\alpha = 90^{\circ}$: no distinction between 0 and 180°
- It affects the tH cross-section in a different way
 - ightarrow cross-section largest for $\alpha = 180^{\circ}$ (i.e. $\kappa_t = -1$)
 - ightarrow not symmetric lpha= 90°: *tH* is sensitive to the sign of the Yukawa
- NB: total cross-section affected by both κ_t' and α

top-Higgs CP properties: phenomenology

Effect of CP-odd coupling on $t\bar{t}H$ observables

- Impact of α on several observables, which one can exploit for analysis on data
- CP-odd scenario gives a smaller differential cross-section at low Higgs p_T
 - \rightarrow at high top p_T : same amount of LL and RR helicity for $t\bar{t}$ no LR or RL
 - \rightarrow at low top p_T : presence of LR or RL, but destructive interfecence in CP-odd case
 - \rightarrow normalised Higgs p_T distribution has a maximum shifted at higher values
- Also: impact on angular variables due to different helicity admixtures
 - ightarrow many possible variables based on top or lepton kinematics, in $t\bar{t}H$ rest- or in lab-frame
 - ightarrow many phenomenology studies over the years to find the best variables

T. Theveneaux-Pelzer CPPM CNRS/IN2P3 Polytech AMU top-Higgs CP properties in $t\bar{t}H$ and $t\bar{t}H$ with $H \rightarrow b\bar{b}$ in ATLAS Mardi 24

ATLAS differential $t\bar{t}H(H \rightarrow b\bar{b})$ measurement

JHEP 06 (2022) 97

ATLAS full run-2 $t\bar{t}H(H \rightarrow b\bar{b})$ analysis - JHEP **06** (2022) 97

- ATLAS published a full run-2 $t\bar{t}H(H
 ightarrow b\bar{b})$ analysis
- Measurement in the STXS framework
 - \rightarrow first differential cross-section in this channel, as a function of $p_T(H)$
 - \rightarrow also: $H \rightarrow \gamma \gamma$ channel arxiv:2207.00348
- The analysis uses final states with 1 or 2 leptons (e or μ) from $t\bar{t}$ decay
 - \rightarrow use of large-R jets in ℓ +jets channel to better probe high $p_T(H)$ regime
 - ightarrow all-hadronic channel not used additional challenge of multijets background

Analysis workflow

- Event selection based on targetted topology
- Top and Higgs kinematics reconstructed with MVA
- Several analysis regions
 - → CRs to constrain backrounds
 - $ightarrow \,$ SRs to measure signal
- Signal regions split according to reconstructed p_T(H)
 - \rightarrow up to $p_T(H) > 450 \text{ GeV}$

Multivariate analysis

- MVA to reconstruct Higgs and top topology
 - ightarrow DNN to tag the large-R jet from $H
 ightarrow bar{b}$ in ℓ +jets boosted channel
 - ightarrow "reconstruction" BDTs to reconstruct Higgs and top kinematics in resolved channels
- This allows to:
 - ightarrow reconstruct the Higgs ho_T we want to measure
 - ightarrow build discriminating variables to separate $t \bar{t} H$ from backgrounds
- "Classification" BDTs trained to separate signal from backgrounds, one per channel
 - ightarrow topological variables, top and Higgs kinematics, B-tagging
 - \rightarrow BDT distribution used in each $p_T(H)$ -dependent signal region (except one)

Results

- $t\bar{t}H$ signal split at truth level vs. $\hat{p}_T(H)$
 - \rightarrow simultaneous fit of the 5 signal categories
 - $\rightarrow \hat{p}_T(H) > 450 \text{ GeV}$ category accessible
- Result compatible with SM predictions •
- Lowest $\hat{p}_T(H)$ category dominated by systs
 - \rightarrow especially those related to $t\bar{t}b\bar{b}$ modelling

Dedicated analysis for CP properties - arxiv:2303.05974

- Dedicated paper to study CP properties in $t\bar{t}H(H \rightarrow b\bar{b})$
- Based on the same analysis, with several modifications
 - \rightarrow tH (both tWH and tHjb) considered as signal
 - \rightarrow reconstruction of top kinematics in the dilepton channel (neutrino weighting technique)
 - ightarrow different choice of signal and control regions
 - ightarrow different variables used for the fit
 - \rightarrow additional systematics on $t\bar{t}b\bar{b}$

$t\bar{t}H(H \rightarrow b\bar{b})$ CP: analysis regions

- Training regions (TRs) are defined based on topology
 - ightarrow where MVAs are trained called SRs in the previous analysis
- SRs are defined within the TRs
 - ightarrow cut on classification BDT to select events enriched in $t\bar{t}H$
- CP-sensitive observables used in the fit in each region within the TRs

Region		Dilepton				ℓ+ jets			
		$\mathrm{TR}^{\geq 4j_*\geq 4b}$	$\operatorname{CR}_{\operatorname{hi}}^{\geq 4j, 3b}$	$\operatorname{CR}_{\operatorname{lo}}^{\geq 4j, 3b}$	$CR_{hi}^{3j,3b}$	$\mathrm{TR}^{\geq 6j,\geq 4b}$	$CR_{hi}^{5j, \ge 4b}$	$CR_{lo}^{5j, \ge 4b}$	TR _{boosted}
Njets			≥ 4		= 3	≥ 6	-	5	≥ 4
N _{b-tag}	@85%	-			≥ 4				
	@77%		-				-		$\geq 2^{\uparrow}$
	@70%	≥ 4		= 3			≥ 4		-
	@60%	-	= 3	< 3	= 3	-	≥ 4	< 4	-
Nboosted cand.			-				0		≥ 1
Fit observable		-	Yield			-	ΔR_{bb}^{avg}		-

ATLAS differential $t\bar{t}H(H \rightarrow b\bar{b})$ CP properties measurement arXiv:2303.05974

$t\bar{t}H(H \rightarrow b\bar{b})$ CP: observables used in the fit

- In the dilepton channel: $b_4 = \frac{(\vec{p}_1 \cdot \hat{z})(\vec{p}_2 \cdot \hat{z})}{|\vec{p}_1||\vec{p}_2|}$
 - $\rightarrow~$ except when top kinematics can't be reconstructed, in which case $\Delta\eta_{\ell\ell}$ is used
- In the ℓ +jets resolved: $b_2 = \frac{(\vec{p}_1 \times \hat{z}) \cdot (\vec{p}_2 \times \hat{z})}{|\vec{p}_1||\vec{p}_2|}$
- In the ℓ +jets boosted: classification BDT, to exploit the $p_T(H)$ spectrum

Channel (TR)	Final SRs and CRs	Classification BDT selection	Fitted observable	
	$CR_{no-reco}^{\geq 4j, \geq 4b}$	-	$\Delta \eta_{\ell \ell}$	
Dilanton (TP $\geq 4/2 \geq 4b$)	$CR^{\geq 4j, \geq 4b}$	$BDT^{\geq 4j, \geq 4b} \in [-1, -0.086)$	b_4	
Dilepton (TK ····)	$SR_1^{\geq 4j, \geq 4b}$	$BDT^{\geq 4j, \geq 4b} \in [-0.086, 0.186)$	b_4	
	$SR_2^{\ge 4j, \ge 4b}$	$BDT^{\geq 4j, \geq 4b} \in [0.186, 1]$	b_4	
	$CR_1^{\geq 6j, \geq 4b}$	$BDT^{\geq 6j, \geq 4b} \in [-1, -0.128)$	b_2	
ℓ + jets (TR ^{$\geq 6j, \geq 4b$})	$CR_2^{\geq 6j, \geq 4b}$	$BDT^{\geq 6j, \geq 4b} \in [-0.128, 0.249)$	b_2	
	$SR^{\tilde{\geq}6j,\geq4b}$	$BDT^{\ge 6j, \ge 4b} \in [0.249, 1]$	b_2	
ℓ + jets (TR _{boosted})	SR _{boosted}	$BDT^{boosted} \in [-0.05, 1]$	BDT ^{boosted}	

T. Theveneaux-Pelzer CPPM CNRS/IN2P3 Polytech AMU top-

top-Higgs CP properties in $t\bar{t}H$ and $t\bar{t}H$ with $H \rightarrow b\bar{b}$ in ATLAS

Mardi 25 avril 2022

ATLAS differential $t\bar{t}H(H \rightarrow b\bar{b})$ CP properties measurement arXiv:2303.05974

$t\bar{t}H(H \rightarrow b\bar{b})$ CP: results

- Likelihood contour in the $(\kappa'_t \cdot \cos \alpha, \kappa'_t \cdot \sin \alpha)$ plane
- Best-fit: $\alpha = 11^{\circ} + 52^{\circ} 73^{\circ}$ and $\kappa'_{t} = 0.84^{+0.30}_{-0.46}$
 - \rightarrow well compatible with SM hypothesis $\alpha = 0^{\circ}$ and $\kappa_t = 1$
- Sensitivity to exclude pure CP-odd hypothesis: 1.2σ
 - \rightarrow excluded at 3.9 σ by $H \rightarrow \gamma \gamma$ ($|\alpha| < 43^{\circ}$ at 95% CL) Phys. Rev. Lett. **125** (2020) 061802
- Dominant effect of systs: $^{+41^{\circ}}_{-54^{\circ}}$ on α and $^{+0.29}_{-0.45}$ on κ'_t
 - \rightarrow especially $t\bar{t}b\bar{b}$ modelling: $^{+37^{\circ}}_{-51^{\circ}}$ on α , compared to $^{+32^{\circ}}_{-49^{\circ}}$ for stat

Conclusion

Conclusion

- Possible SM extension with top-Higgs CP-odd interaction
- Can be tested on data with dedicated $t(\bar{t})H$ analyses
- Pure CP-odd scenario excluded by LHC run-2 data thanks to $H \to \gamma \gamma$
- ...but CP violating CP-even/CP-odd mixture still possible
- $H \rightarrow b\bar{b}$ analysis helps especially in the high $p_T(H)$ regime
- However, sensitivity limited by systs on the tībb background modelling

Backup

Uncertainties, $t\bar{t}H(H \rightarrow b\bar{b})$ STXS JHEP **06** (2022) 97

Uncertainty source	$\Delta \mu$			
Process modelling				
$t\bar{t}H$ modelling	+0.13	-0.05		
$t\bar{t} + \geq 1b$ modelling				
$t\bar{t} + \geq 1b$ NLO matching	+0.21	-0.20		
$t\bar{t} + \ge 1b$ fractions	+0.12	-0.12		
$t\bar{t} + \ge 1b$ FSR	+0.10	-0.11		
$t\bar{t} + \ge 1b$ PS & hadronisation	+0.09	-0.08		
$t\bar{t} + \geq 1b p_T^{bb}$ shape	+0.04	-0.04		
$t\bar{t} + \ge 1b$ ISR	+0.04	-0.04		
$t\bar{t} + \geq 1c$ modelling	+0.03	-0.04		
$t\bar{t} + \text{light modelling}$	+0.03	-0.03		
tW modelling	+0.08	-0.07		
Background-model statistical uncertainty	+0.04	-0.05		
b-tagging efficiency and mis-tag rates				
b-tagging efficiency	+0.03	-0.02		
c-mis-tag rates	+0.03	-0.03		
<i>l</i> -mis-tag rates	+0.02	-0.02		
Jet energy scale and resolution				
b-jet energy scale	+0.00	-0.01		
Jet energy scale (flavour)	+0.01	-0.01		
Jet energy scale (pile-up)	+0.00	-0.01		
Jet energy scale (remaining)	+0.01	-0.01		
Jet energy resolution	+0.02	-0.02		
Luminosity	+0.01	-0.00		
Other sources	+0.03	-0.03		
Total systematic uncertainty	+0.30	-0.28		
$t\bar{t} + \ge 1b$ normalisation	+0.04	-0.07		
Total statistical uncertainty	+0.20	-0.20		
Total uncertainty	+0.36	-0.34		

Uncertainties, $t\bar{t}H(H \rightarrow b\bar{b})$ CP arxiv:2303.05974

Uncertainty source	Δα	[°]	Uncertainty source	$\Delta \kappa'_t$	
Process modelling			Process modelling		
Signal modelling	+8.8	-14	Signal modelling	+0.10	-0.10
$t\bar{t} + \ge 1b$ modelling			$t\bar{t} + \ge 1b$ modelling		
$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+23	-37	$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+0.08	-0.23
$t\bar{t} + \ge 1b$ NLO matching	+22	-33	$t\bar{t} + \ge 1b$ NLO matching	+0.15	-0.30
$t\bar{t} + \ge 1b$ fractions	+14	-21	$t\bar{t} + \ge 1b$ fractions	+0.09	-0.21
$t\bar{t} + \ge 1b$ FSR	+5.2	-9.9	$t\bar{t} + \ge 1b$ FSR	+0.01	-0.02
$t\bar{t} + \ge 1b$ PS & hadronisation	+16	-24	$t\bar{t} + \ge 1b$ PS & hadronisation	+0.09	-0.20
$t\bar{t} + \geq 1b p_T^{b\bar{b}}$ shape	+5.4	-4.6	$t\bar{t} + \ge 1b p_T^{b\bar{b}}$ shape	+0.07	-0.11
$t\bar{t} + \ge 1b$ ISR	+14	-24	$t\bar{t} + \ge 1b$ ISR	+0.07	-0.17
$t\bar{t} + \ge 1c$ modelling	+6.6	-11	$t\bar{t} + \geq 1c$ modelling	+0.04	-0.10
$t\bar{t}$ + light modelling	+2.5	-4.7	$t\bar{t}$ + light modelling	+0.00	-0.01
b-tagging efficiency and mis-tag rates			b-tagging efficiency and mis-tag rates		
b-tagging efficiency	+8.7	-15	b-tagging efficiency	+0.06	-0.12
c-mis-tag rates	+6.7	-11	c-mis-tag rates	+0.03	-0.07
l-mis-tag rates	+2.3	-2.7	1-mis-tag rates	+0.01	-0.03
Jet energy scale and resolution			Jet energy scale and resolution		
b-jet energy scale	+1.6	-3.8	b-jet energy scale	+0.02	-0.02
Jet energy scale (flavour)	+7.8	-11	Jet energy scale (flavour)	+0.01	-0.05
Jet energy scale (pileup)	+5.2	-7.9	Jet energy scale (pileup)	+0.02	-0.05
Jet energy scale (remaining)	+8.1	-13	Jet energy scale (remaining)	+0.04	-0.08
Jet energy resolution	+5.7	-9.3	Jet energy resolution	+0.03	-0.09
Luminosity	≤ ∃	:1	Luminosity	$\leq \pm 0.01$	
Other sources	+4.9	-8	Other sources	+0.03	-0.07
Total systematic uncertainty	+41	-54	Total systematic uncertainty	+0.29	-0.45
$t\bar{t} + \ge 1b$ normalisation	+8.2	-13	$t\bar{t} + \ge 1b$ normalisation	+0.05	-0.15
κ'_t	+17	-33	α	+0.08	-0.07
Total statistical uncertainty	+32	-49	Total statistical uncertainty	+0.09	-0.10
Total uncertainty	+52	-73	Total uncertainty	+0.30	-0.46

T. Theveneaux-Pelzer CPPM CNRS/IN2P3 Polytech AMU

Mardi 25 avril 2022

CP properties - comparison with $H \rightarrow \gamma \gamma$ result

