

Test of CP-invariance of the Higgs boson in vector-boson fusion production and its decay into four leptons

Arthur (RD) Schaffer

for the ATLAS Collaboration

Overview

- CP violation is one of three ingredients required for the observed Baryon Asymmetry of the Universe (BAU)
- The observed CP violation, first in kaon system and then extensively in b- and c-mesons, can be explained by the CPviolating complex phase of the CKM matrix
- However, this complex phase is not sufficient to explain BAU
 - => so other sources of CP-violation are required
- Two possibilities are the neutrino sector, and the Higgs sector
 - Here we explore the H -> ZZ* -> 4I (I = e, μ) channel in both VBF production and the 4I decay
 - Other Higgs searches are/have been performed in the Higgs fermion sector

Overview of the H->ZZ*->4I CP-violation search

- This measurement uses CP-odd optimal observables (OO)
 - Moriond EW 2023, arxiv:2304.09612, submitted to JHEP, CERN News
 - Largely based on the work in the thesis of Antoine Laudrain 2019
- Full Run 2 data set in ATLAS, 139 fb⁻¹, with about 200 H->ZZ*->4I decays including about 10 vector boson fusion (VBF) events expected
- The optimal observables are built from SMEFT matrix elements (MadGraph LO)
 - Three dim-6 CP-odd operators contribute with different sensitivity to VBF production and H4I decay
- Two types of measurements: OO distributions are used both
 - to directly constrain CP-odd couplings, and
 - unfolded to fiducial phase space to allow model reinterpretation
- CP-odd search is based on shape-only asymmetries, ignoring x-sec changes
- Also include inclusive x-sec in VBF fiducial phase space

Methodology

- SMEFT Lagrangian (dim-6 operators):
- Two sets of three CP-odd couplings Lagrangian before and after EW symmetry breaking
 - Warsaw and Higgs bases
- Warsaw basis is the "accepted" basis for measurement combinations
- Higgs basis has couplings more closely aligned with measurement sensitivity, i.e. for VBF prod or H4I decay
- Provide results for both
 - One basis linearly transforms into the other
- For comparison with an earlier $H\tau\tau$ measurement:

•
$$\widetilde{d}$$
 where $c_{H\widetilde{W}} = c_{H\widetilde{B}} = \frac{\Lambda^2}{v^2}\widetilde{d}$,

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^{(6)}$$

HVV coupling

Operator	Structure	Coupling			
Warsaw Basis					
$O_{\Phi ilde W}$	$\Phi^\dagger \Phi ilde W^I_{\mu u} W^{\mu u I}$	$c_{H\widetilde{W}}$			
$O_{\Phi ilde W B}$	$\Phi^{\dagger} au^{I} \Phi ilde{W}^{I}_{\mu u} B^{\mu u}$	$c_{H\widetilde{W}B}$			
$O_{\Phi ilde{B}}$	$\Phi^{\dagger}\Phi ilde{B}_{\mu u}B^{\mu u}$	$C_{H\widetilde{B}}$			
	Higgs Basis	or			
$O_{hZ\tilde{Z}}$	$h Z_{\mu u} ilde{Z}^{\mu u}$	\widetilde{c}_{zz}			
$O_{hZ ilde{A}}$	$h Z_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{z\gamma}$			
$O_{hA ilde{A}}$	$hA_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{\gamma\gamma}$			

Methodology (2)

Cross section is matrix element squared:

$$|\mathcal{M}|^{2} = \left| \mathcal{M}_{SM} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{M}_{BSM,i} \right|^{2}$$

$$= |\mathcal{M}_{SM}|^{2} + 2 \sum_{i} \frac{c_{i}}{\Lambda^{2}} \Re \left(\mathcal{M}_{SM}^{*} \mathcal{M}_{BSM,i} \right) + \sum_{i} \sum_{j} \frac{c_{i}c_{j}}{\Lambda^{4}} \Re \left(\mathcal{M}_{BSM,i}^{*} \mathcal{M}_{BSM,j} \right)$$

$$SM \qquad \text{interference term} \qquad \text{quadratic term}$$

$$CP: \quad \text{even} \qquad \text{odd} \qquad \text{even}$$

$$OO \text{ for each coupling is the interference term normalized by SM}$$

$$OO = rac{2 \Re \left(\mathcal{M}_{SM}^* \mathcal{M}_{BSM}
ight)}{\left| \mathcal{M}_{SM} \right|^2}$$
 LO MEs calculated with MadGraph for OO

- Samples are simulated with SMEFT-sim (MadGraph LO + Pythia) in 3-d coupling space
 - Using interpolation (morphing) to evaluate cross section at any point
 - Morphing includes linear and quadratic terms, but x-sec is normalized to SM

H -> ZZ* -> 4I reconstruction and selection

- Triggers: 1,2,3-lepton triggers
 - 98% eff
- "Loose" lepton ID,
 - $p_T > 5$ (7) GeV for μ (e)
- Backgrounds: *
 - ZZ* non-resonant (side-band fit)
 - reducible Z+jet, tt (data-driven)
 - reduced with isolation + d₀ cuts
- Four channels: 4μ , $2e2\mu$, $2\mu 2e$, 4e*
 - Leading pair ~onshell Z, subleading pair ~offshell Z

RD Schaffer - IRN Terascale@Grenoble

Analysis Overview

Optimal observable distributions

- SM OO distribution is symmetric (green)
- Adding CP-odd coupling shows clear asymmetry depending on sign of coupling (Mean ≠ 0)
- Right plot with equally-populated bins shows important effect of the distribution tails
 - Equal population binning is used in the fits of this analysis
 - done with mix of SM + BSM expected distributions

CP asymmetries

- For VBF production and H4I decay, the CP asymmetry is largely embedded in:
 - Δφ_{jj} the η-ordered angular separation of the di-jet system for VBF production, which is CP-asymmetric itself, and
 - m₁₂ and m₃₄ the masses of the leading and subleading di-lepton pairs of the Higgs decay, which are not directly CP-asymmetric themselves
- These Optimal Observables capture more information in the Matrix Elements, and are CP-odd asymmetric
 - E.g. we have seen significantly better limits for VBF using OO rather than $\Delta\phi_{jj}$

Fiducial analysis

- Unfold the optimal observable distributions
- Measure fiducial cross section in enhanced VBF region:
 - m_{jj} > 400 GeV and |η_{jj}| > 3.0
 - Two measurements:
 - Fid x-sec in this region (mix of ggF, VBF, VH, ttH): VBF purity ~59%
 - Fid x-sec including ggF-estimate as background (side-band norm, shape from MC): purity ~95%
 O But this is more model dependent
- Completes the fiducial differential distributions of <u>H4I fiducial analysis</u>

Leptons and jets				
Leptons	$p_{\rm T} > 5 {\rm GeV}, \eta < 2.7$			
Jets	$p_{\rm T} > 30 \text{ GeV}, y < 4.4$			
	Lepton selection and pairing			
Lepton kinematics	$p_{\rm T} > 20, 15, 10 {\rm GeV}$			
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Subleading pair (m_{34})	Remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $			
	Event selection (at most one quadruplet per event)			
Mass requirements	$50 \text{ GeV} < m_{12} < 106 \text{ GeV}$ and $m_{\text{threshold}} < m_{34} < 115 \text{ GeV}$			
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$			
Lepton/Jet separation	$\Delta R(\ell_i, \text{jet}) > 0.1$			
J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs			
Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$			
If an extra lepton with $p_{\rm T} > 12$ GeV is found, the quadruplet with the largest matrix element value is kept				

RD Schaffer - IRN Terascale@Grenoble

Results: VBF prod $OO_{jj}^{\tilde{c}_{zz}}$ data distributions

- data compared to expected distributions
 - events with 2 jets, m_{jj} > 120 GeV
 - 35 events expected
 - both SM and potential BSM expectations shown
 - SR4: 8 events seen, 4.1 ± 0.5 expected
 - 12 bins for VBF fit
 - fluctuation in positive SR1 affects likelihood scan

Results: decay-only OO data distributions

- Optimal observable distributions for:
 - $C_{H\widetilde{B}}$, $C_{H\widetilde{W}B}$, $C_{H\widetilde{W}}$, \widetilde{d}
- BSM CP-odd clearly peaks in tails
- 48 bins for decay fit
 - each bin here is plotted with equal width
- Data in good
 agreement with SM

Expected sensitivity - 95% CLs

- Table shows relative sensitivity for prod / decay / combined
 - Recall: ~200 events inclusively, ~10 VBF events
 - Note: combined fit keeps ~90% of all events for decay fit (missing ggF 2 jet events)

	EFT coupling	Expected 95% CL			
		production-only	decay-only	combined	
_	$c_{H\widetilde{B}}$	—	±0.37	_	
Warsaw basis	$c_{H\widetilde{W}B}$	_	±0.72	_	
	$c_{H\widetilde{W}}$	±4.8	±1.34	±1.27	
	\widetilde{d}	±0.63	±0.018	±0.019	
	\widetilde{c}_{zz}	±2.4		_	
Higgs basis	$\widetilde{c}_{z\gamma}$	±6.6	±0.76	±0.80	
	$\widetilde{c}_{\gamma\gamma}$	_	±0.76	_	

Likelihood scan for VBF prod and combined

• offset due to fluctuation in SR1 - also origin of larger syst effect near C_{ZZ} = 0 from parton shower moving ggF 2 jet events into SR

* Right: ${}^{C}H\widetilde{W}$ VBF prod-only (orange), decay-only (purple), and combined (green) observable scans

dashed line - stat-only, solid line - with systematics

Decay-only observable likelihood scans

Systematics are negligible

- * Slightly worse (better) observed limits for ${}^{C}H\widetilde{B}$, ${}^{C}H\widetilde{W}B$, and \widetilde{d} (${}^{C}H\widetilde{W}$)
 - due to small excesses in tails (deficit in center)

Good agreement with SM!

Likelihood scans in 2-d

- Decay-only observable scans for all pairing of 3 Warsaw couplings:
 - ${}^{C}H\widetilde{B}_{VS}{}^{C}H\widetilde{W}B_{,}$
 - ${}^{C}H\widetilde{B}$ vs ${}^{C}H\widetilde{W}$, and
 - $c_{H\widetilde{W}B \text{ vs}} c_{H\widetilde{W}}$
- For Higgs basis couplings, observable scans for VBF prod for \widetilde{c}_{zz} and decayonly for $\widetilde{c}_{\gamma\gamma}$

RD Schaffer - IRN Terascale@Grenoble

16

Summary of direct results

- Observables scans:
 - Expected gray bands
 - Observed data points + 68% CL uncertainties
 - 95% CL also given
 - C_{ZZ} prod-only
 - ${}^{C}H\widetilde{W}$ combined
 - others decay-only
- All results in good agreement with SM

Comparison with other measurements

- Comparison with:
 - H4I STXS x-sec only, not CP-odd specific
 - ATLAS CP-odd Hγγ VBF
 - combined with $H\tau\tau$ for d
 - CMS H4I CP-odd
- All agree with SM
- Present measurement has $c_{H\hat{W}}$ best expected sensitivity (gray bands) except for H $\gamma\gamma$ VBF for ${}^{C}H\widetilde{W}$
 - Due to higher VBF stats

Differential optimal observables distributions

- Distributions for production $OO_{jj}^{c_{H\widetilde{W}}}$, and decay $OO_{4\ell}^{c_{H\widetilde{W}}}$
 - Fewer bins than for direct due to unfolding bin optimization
 - Other observable differential distributions available

VBF-enriched fiducial cross-section

- VBF-enriched region defined as
 - SR: m_{jj} > 400 GeV and |η_{jj}| > 3.0 (bin 3)
 - Background normalized from side-bands
- x-sec provided for
 - all productions modes in SR

only VBF, VH, ttH with ggF treated as bkg

VBF-enriched	Signal for cross-	Purity of	Expected	Observed	
region	section estimates	VBF signal	cross-section [fb]	cross-section [fb]	
$N_{\text{jets}} \ge 2, \ m_{jj} \ge 400 \text{ GeV}$	All production modes	59 %	$0.134^{+0.065}_{-0.053} {}^{+0.014}_{-0.012}$	$0.215^{+0.075}_{-0.063} {}^{+0.016}_{-0.013}$	
$ \Delta \eta_{jj} \ge 3.0$	VBF + VH + ttH	95 %	$0.088^{+0.063}_{-0.053} {}^{+0.017}_{-0.020}$	$0.172^{+0.072}_{-0.062} {}^{+0.016}_{-0.018}$	

Summary

- New full Run 2 results on search for CP-odd Higgs couplings to vector bosons in the Higgs boson to four lepton channel in ATLAS
- Measurement uses optimal observables

$$OO = \frac{2\Re \left(\mathcal{M}_{\rm SM}^* \mathcal{M}_{\rm BSM}\right)}{|\mathcal{M}_{\rm SM}|^2}$$

- Limits obtained in both Warsaw and Higgs bases using SMEFT
 - Dominated by interference term, O(Λ⁻²) in x-sec, small sensitivity to quadratic terms, O(Λ⁻⁴) in x-sec
 - Implies qualitatively, low expected sensitivity to missing dim-8 operators, also O(Λ⁻⁴) in x-sec
 - = > improvement over analyses relying on rates rather than shapes
- Measurements of fiducial differential optimal observables
 - Completing the set for Higgs boson to four lepton
- Also providing fiducial x-sec measurements in VBF phase space

Category composition

RD Schaffer - IRN Terascale@Grenoble

Neural network used to separate VBF from ggF

Expected and observed events per category

	77* CD	Inclusive SD	VBF-depleted VBF				
	LL CK	Inclusive SK	Region	SR1	SR2	SR3	SR4
ggF	8.2 ± 1.3	181 ± 12	165 ± 12	$7.5^{+3.0}_{-2.4}$	$5.6^{+1.8}_{-1.5}$	2.2 ± 0.6	0.49 ± 0.17
bbH	$0.087^{+0.016}_{-0.015}$	1.85 ± 0.05	1.65 ± 0.05	0.11 ± 0.01	$0.072^{+0.010}_{-0.009}$	$0.020^{+0.005}_{-0.003}$	< 0.01
VBF/VH	1.39 ± 0.16	23.8 ± 0.7	13.8 ± 0.6	$1.60^{+0.09}_{-0.08}$	1.89 ± 0.11	3.01 ± 0.18	3.5 ± 0.4
ttH,tH	$0.22^{+0.03}_{-0.04}$	$1.89^{+0.21}_{-0.22}$	0.44 ± 0.05	1.22 ± 0.14	0.179 ± 0.023	$0.046^{+0.009}_{-0.010}$	< 0.01
ttV,VVV	6.79 ± 0.13	1.31 ± 0.06	0.62 ± 0.04	0.53 ± 0.04	0.150 ± 0.020	< 0.01	< 0.01
ZZ^*	229^{+20}_{-25}	98 <u>+</u> 6 _9	92^{+6}_{-8}	$3.5^{+1.3}_{-1.7}$	1.7 ± 0.6	$0.48^{+0.16}_{-0.15}$	$0.086^{+0.025}_{-0.028}$
Z jet, $t\bar{t}$, WZ	21 ± 5	13 ± 4	12 ± 3	0.8 ± 0.9	0.3 ± 0.6	0.07 ± 0.26	0.01 ± 0.09
Total SM	267^{+21}_{-26}	321+14	286^{+14}_{-15}	15 ± 3	$9.9^{+2.0}_{-1.7}$	5.9 ± 0.7	4.1 ± 0.5
Data	294	311	276	14	9	4	8

Results: coupling limits for 68% and 95% CL

EFT coupling	Expected		Observed		Best-fit	SM	Fit type
parameter	68% CL	95% CL	68% CL	95% CL	value	<i>p</i> -value	
$c_{H\widetilde{B}}$	[-0.18, 0.19]	[-0.37, 0.37]	[-0.42, 0.31]	[-0.61, 0.54]	-0.078	0.86	decay
$c_{H\widetilde{W}B}$	[-0.36, 0.36]	[-0.72, 0.72]	[-0.56, 0.53]	[-0.97, 0.98]	-0.017	0.99	decay
$c_{H\widetilde{W}}$	[-0.63, 0.63]	[-1.26, 1.28]	[-0.07, 1.09]	[-0.81, 1.54]	0.60	0.37	comb
\widetilde{d}	[-0.009, 0.009]	[-0.018, 0.018]	[-0.017, 0.014]	[-0.026, 0.025]	-0.003	0.86	decay
\widetilde{c}_{zz}	[-0.77, 0.79]	[-2.4, 2.4]	[0.37, 1.21]	[-1.20, 1.75]	0.78	0.11	prod
$\widetilde{c}_{z\gamma}$	[-0.47, 0.47]	[-0.76, 0.76]	[-0.54, 0.54]	[-0.84, 0.83]	0.083	0.93	decay
$\widetilde{c}_{\gamma\gamma}$	[-0.38, 0.38]	[-0.76, 0.77]	[-0.52, 0.48]	[-0.99, 0.93]	-0.01	0.99	decay

Effects of including x-sec or CP-even couplings in analysis

- Including only linear terms in morphing:
 - 68% (95%) CL limits change by ~1% (~3%)
- Rather than normalizing each morphing point to SM, scale by the expected SMEFT x-sec:
 - Decay-only limits decrease by < 5% (10%) for 68% (95%) CL
 - Production-only limits (^{C}zz) tighten by 10% (50%)
- Checked including non-zero CP-even couplings for *C_{HB}*, *C_{HWB}* and *C_{HW}*
 - For current experimental limits on CP-even coupliings:
 - Negligible effect for production-only
 - Weaker limits for decay-only at ~1%