

First WIMP Search Results from the XENONnT Experiment

Julien Masbou on behalf of the XENON Collaboration Subatech – Université de Nantes

WIMP direct detection principle

XENON Collaboration

Julien Masbou, IRN Terascale, Grenoble, 24th April 2023

Phases of the XENON Program

Expected rate for terrestrial detector

Expected rate for terrestrial detector

Dual phase TPC: principle

TPC = Time Projection Chamber

S1: → Photon (λ = 178 nm) from Scintillation process

→ Electrons drift

- \rightarrow Extraction in gaseous phase
- → Proportional scintillation light

<u>3D reconstruction :</u>

- \rightarrow X,Y from top array
- \rightarrow Z from Drift time

(S2/S1)wimp,n < (S2/S1)γ,β

From XENON1T to XENONnT

- + Reused much of the XENON1T infrastructure
- + Larger TPC: 2 t \rightarrow 5.9 t LXe (active target)
- + Improved cleanliness and radiopurity
- + Liquid xenon purification system
- + Radon distillation system
- + Water Cherenkov neutron-veto
- + New calibration systems and techniques
- + Triggerless DAQ
- + 2nd Recovery & Storage system

- XENON, arXiv:2112.05629
- Plante et al, arXiv:2205.07336
- Murra et al, arXiv:2205.11492

XENON, arXiv:2212.11032

XENONnT Time Projection Chamber

- 8.5 t of LXe total, 5.9 t in target
- 494 3-inch Hamamatsu R11410-3 PMTs
- 3 electrodes for drift and extraction fields
- 2 additional electrodes for PMT shielding

XENONnT Time Projection Chamber

Calibration of detector response and efficiency:

- Internal sources:
 ³⁷Ar, ^{83m}Kr, ^{129m}Xe, ^{131m}Xe, ²²⁰Rn
- External sources: AmBe,Th

Liquid xenon purification

Liquid xenon purification

1T

nT

Background Mitigation

Background from intrinsic radioactive isotopes:

- ²¹⁴Pb (²²²Rn daughter)
 - ⁸⁵Kr

Careful screening, material selection and Continuous Radon Removal through distillation

XENON, PRL 120,161805 (2022)Background ~5x smaller than in XENON1T

Calibration of ER / NR Response

- Calibration of ER response using ²²⁰Rn
 - Gives approximately flat energy spectrum
 - Used to validate cut acceptance
- Detector performance at low energy with ³⁷Ar
 - Mono-energetic line at 2.8 keV
 - High statistics
 - Removed via distillation column ($T_{1/2} = 35 d$)
- Calibration of NR response with AmBe
- ER model based on combined fit
- Uncertainties propagated via Principal
 Component Analysis

- SRO Nuclear Recoil Search Data
- July 6 to Nov 10, 2021 (97.1 days)
- 95.1 days lifetime corrected
- (4.18 \pm 0.13) tonne Fiducial Volume
- Exposure: 1.1 tonne x year
- Blind analysis

- Detection efficiency:
 - Threshold driven by 3-fold
 PMT coincidence for S1
 - Full waveform simulation
 - Data-driven methods from
 ^{83m}Kr and ³⁷Ar
- Data quality selection evaluated with calibration data
 - ROI defined to fully contain WIMP spectra
 - cS1 [0 pe, 100 pe]
 - cS2 [10^{2.1} pe, 10^{4.1} pe]
- Total acceptance > 10% for [3 keV_{NR}, 60 keV_{NR}]

Accidental Coincidences (AC): random pairing of small SI and S2 signals

- Accidental Coincidences (AC): random pairing of small SI and S2 signals
- Surface/Wall: ²¹⁰Pb plate-out on the PTFE wall of the TPC \rightarrow ²¹⁰Po α -decays

- Accidental Coincidences (AC): random pairing of small SI and S2 signals
- Surface/Wall: ²¹⁰Pb plate-out on the PTFE wall of the TPC \rightarrow ²¹⁰Po α -decays
- Nuclear Recoil backgrounds: o CEvNS o Neutrons

WIMP Results

	Expectation	Bes	st Fit	
	ROI		Signal-like	ER Wall Neutron AC WIM
ER	134	135^{+12}_{-11}	0.81 ± 0.07	
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.2	0.42 ± 0.10	
CEvNS	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.011	[] [] [] [] [] [] [] [] [] [] [] [] [] [
AC	4.3 ± 0.2	4.32 ± 0.15	0.363 ± 0.013	CS 10 ³
Wall	14 ± 3	12^{+0}_{-4}	$0.34\substack{+0.01\\-0.11}$	· · ·
Total	154	152 ± 12	$1.95\substack{+0.12\\-0.16}$	
WIMP		2.4 ^{*)}	1.2 ^{*)}	
Observed		152	3	cS1 [PE]
			.ä	*) Assuming a 200 GeV WIMP and

152 events in ROI, 16 in blinded region Best fit indicates no significant excess *) Assuming a 200 GeV WIMP and a best-fit σ = 2.5 × 10⁻⁴⁷ cm²

WIMP Results

- XY asymmetry in unblinded data
- Not observed in corrections, quality selection or calibration data

WIMP Spin-Independent Results

Blinded analyses

*) arXiv:1105.3166, arXiv:2105.00599 with 50% [median] rejection power

arXiv:2303.14729

WIMP Spin-Independent Results

XENON, PRL 121, 111302 (2018) LZ, arXiv:2207.03764

arXiv:2303.14729

Julien Masbou, IRN Terascale, Grenoble, 24th April 2023

WIMP Spin-Dependent Results

Reinterpreting results as a purely spin-dependent coupling to ¹²⁹Xe and ¹³¹Xe

Conclusions

- Results from a blinded Dark Matter search with 1.1 tonne-year exposure
- Unprecedented low ER background rate of (15.8 ± 1.3) events / (keV × t × yr)
 Further reduction with GXe + LXe radon distillation
- Spin-independent limit of 2.6 \times 10⁻⁴⁷ cm² (90% C.L.) at 28 GeV/c²
- Data taking ongoing with improved ER background
- Neutron veto will be loaded with Gd-sulfate octahydrate to increase neutron detection efficiency

arXiv:2303.14729