FIRST WIMP SEARCH RESULTS FROM THE LUX-ZEPLIN EXPERIMENT Amy Cottle, University of Oxford

COLLABORATION

Science and Technology Facilities Council

<u>@lzdarkmatter</u> https://lz.lbl.gov/

LZ Collaboration Meeting University Of Maryland 5th-7th January 2023

36 Institutions: ~250 scientists, engineers, and technical staff

INTRODUCTION TO LZ

<u>NIM A, 163047 (2019)</u>

- Based at the Sanford Underground
- Dual-phase xenon time projection •

TPC DETECTION PRINCIPLE

- Interactions in the xenon create
 - Light prompt scintillation S1
 - Charge electrons drifted and extracted into gas -> proportional scintillation - S2
- Excellent 3D position reconstruction (~mm)
- S2:S1 ratio discriminate electronic recoils (ERs) from potential WIMP nuclear recoils (NRs)
- Distinguish between single scatter (SS) and multiple scatter (MS) interactions

VETO DETECTOR ANTI-COINCIDENCE

- 17 tonnes Gd-loaded scintillator in OD

TPC & SKIN ASSEMBLY

OD CONSTRUCTION & UNDERGROUND INSTALLATION

Water Tank Panoramic

Cryostat Insertion

Instrumented OD

FIRST SCIENCE RUN (SR1)

- 116 calendar days -> 89 live days
- Stable detector conditions
 - Temperature of 174.1 K
 - Gas pressure of 1.791 bar
 - Drift field of 193 V/cm
 - Extraction field of 7.3 kV/cm (in gas)
- Continuous purification at 3.3 t/day through hot getter system
- Demonstration run, no explicit bias mitigation

8

TPC CALIBRATIONS

- Backgrounds predominantly ERs; WIMPs produce NRs
- Tritiated methane (CH₃T) injection to calibrate ER band
 - Spatially homogenous β source
- DD neutron generator (NR band) •
 - Monoenergetic 2.45 MeV neutrons
- 99.9% discrimination of beta backgrounds under NR band median achieved

4.50 4.25 4.00[[phd]] 3.75 S2(3.50 \log_{10} 3.25 3.00 2.75 2.50

ACCIDENTAL COINCIDENCE BACKGROUNDS

- Unrelated S1s & S2s can accidentally combine to produce single scatter events
- Rate: population of definite accidental events with drift time >1 ms
- Distribution: fake events constructed from lone S1 & S2 pulse waveforms
- Analysis cuts developed to combat observed pulse/event pathologies
 - >99.5% efficiency in removing accidentals
 - SR1 WIMP search counts: 1.2 ± 0.3

counts/tonne/year

12

WIMP ANALYSIS - ROI & FV

- Region of Interest definition •
 - 3 < S1c < 80 photons detected (phd); three-fold PMT coincidence
 - Uncorrected S2 > 600 phd; log10 (S2c) < 5
- Fiducial volume (FV) definition •
 - 86 us < drift time < 936.5 us cut to avoid higher background rates at TPC edges
 - Radial cut chosen to ensure <0.01 wall ____ background counts in the FV
- Calculated fiducial mass of 5.5 ± 0.2 t •

WIMP ANALYSIS - CUTS & DATA QUALITY

1.0

- Event selection criteria
 - FV, ROI, single scatter cuts
 - Veto detector anti-coincidence
 - S1/S2 shape cuts
- Cuts developed on non-WIMP ROI background & calibration data
- Rejection of live time with detector instabilities, high TPC pulse rates
 - 60 ± 1 live days

WIMP ANALYSIS - DATA & STATISTICAL INFERENCE

• 335 events after all cuts

- PDFs created with energy deposit + detector response simulations*
- Profile likelihood ratio (PLR) analysis

- 1 & 2-Sigma Contours
 Post-fit total background distribution
- ³⁷Ar
- ⁸B
- 30 GeV/c² WIMP
- NR band from DD

* j.astropartphys.2020.102480

4.50 4.25 4.00 [[phd]] 3.75 $\log_{10}(S2c$ 3.50 3.25 3.00 2.75

WIMP ANALYSIS - BACKGROUNDS & STATISTICAL INFERENCE

Component	Expected Events	Best Fit Events
β decays & detector γs	215 ± 36	222 ± 16
37 Ar	[0, 288]	$52.5^{+9.6}_{-8.9}$
¹²⁷ Xe	9.2 ± 0.8	9.3 ± 0.8
¹²⁴ Xe	5.0 ± 1.4	5.2 ± 1.4
¹³⁶ Xe	15.1 ± 2.4	15.2 ± 2.4
Solar v ERs	27.1 ± 1.6	27.2 ± 1.6
⁸ B CEvNS	0.14 ± 0.01	0.15 ± 0.01
Det. Neutrons	$0.00^{+0.02}$	$0.00^{+0.02}$
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Total w/o ³⁷ Ar	273 ± 36	280 ± 16
Total w/ 37Ar		333 ± 17

WIMP ANALYSIS - SR1 SPIN-INDEPENDENT LIMIT

- Two-sided PLR search with power-constrained limit defined using rejection power
- Minimum cross-section of σ_{SI} = 9.2 × 10⁻⁴⁸ cm² for WIMP mass of 36 GeV/c²
- No evidence for WIMPs

<u>Key</u>

- Observed limit
- Median expected sensitivity

EPJC 81, 907 (2021), arXiv:1105.3166

WIMP ANALYSIS - SR1 SPIN-DEPENDENT LIMITS **WIMP-Neutron Scattering**

WIMP SEARCH PROSPECTS

- SR1 covers just 6% of planned full exposure of 1000 live days
 - Still a lot of parameter space explorable with LZ
 - 1000-day projected sensitivity:

90% CL minimum: 1.4 x 10⁻⁴⁸ cm² at 40 GeV/c²

PRD 101, 052002 (2020)

 10^{-42} 10-43 $[cm^2]$ 10^{-44} **G**SI 10-45 10-46 10-47 10-48 10-49

-nucleon

WIMP-

CONCLUSIONS

- World-leading spin-independent WIMP search limit achieved with just 6% of planned exposure
 - Now entering discovery parameter space
- Background sources well examined & documented in <u>dedicated paper</u>
- Multiple other physics channels to explore
 - Papers in preparation on SR1 data
- <u>XLZD consortium</u> formed, looking towards the ultimate xenon rare physics observatory

BACKUP SLIDES

TPC ENERGY RESPONSE

- S1s & S2s position-corrected using ^{131m}Xe background, ^{83m}Kr calibration
- Doke plot constructed with monoenergetic electron recoil peaks

VETO DETECTOR RESPONSE

- Skin & OD response and inter-detector timings calibrated
 - OD optical calibration system
 - External γ-ray & neutron sources (e.g. ²²Na; DD, AmLi, ²⁵²Cf)
- ¹²⁷Xe Skin tagging efficiency of 78 ± 5% based on K-shell analysis
- OD tagging efficiency of TPC-interacting neutrons of $89 \pm 1\%$ (AmLi calibrations)
 - TPC-OD coincidence window: 1200 µs; threshold equivalent to ~200 keV

AR37 ESTIMATE

- Ar37 a significant background in early LZ data/SR1 WIMP search
 - K-shell e⁻ capture -> 2.8 keV
 - $\tau_{1/2} = 35$ days
- Can be produced via cosmic spallation on xenon
 - Calculated using the ACTIVIA package & estimated exposure of the xenon during transport*
 - Large uncertainties in spallation cross-section

* PRD 105, 082004 (2022)

NEUTRONS

- OD Gd-loaded scintillator high thermal neutron capture cross-section
 - Measured OD neutron tagging
 efficiency of 89 ± 1%
- Likelihood analysis of sideband of events passing all WIMP search cuts except OD anti-coincidence
 - Constraint in sideband of 0^{+0.8}
 events
 - Constraint on SR1 WIMP search neutron background of 0^{+0.2} events

LIVE TIME VETOES

- thus contributing to accidental coincidence backgrounds
- Removal of periods • after S2s (e-/ph trains) excludes ~30% of our live time
- Working on optimising this live time veto for future runs

LIMIT SHAPE

Downward fluctuation in limit caused by deficiency of events under Ar37 contour

Calibrations and Xe127 M-shell counts as expected under signal acceptance model -> background under-fluctuation

27

LZ LIMIT UPDATE

BACKGROUNDS PAPER

⁶⁰Co Dat Cavern gamma ²³²Th-early Fit Internals ¹³⁶Xe $2\nu\beta\beta$ ²³²Th-late 2000 1500 2500

Reconstructed Energy [keVee]

accessful background model built for SR1 underpinning WIMP search result

odel extends beyond the WIMP search region of interest to other energy ranges

WHAT'S NEXT FOR LZ?

• LZ plans to take 1000 live days of data = x17 more exposure than SR1

Broad physics programme available e.g. neutrinoless double beta decay, solar axions • PRC 102, 014602 (2020), PRD 104, 092009 (2021)

BEYOND LZ - XLZD CONSORTIUM

- XLZD consortium formed from the LZ, XENON and DARWIN collaborations
- Coming together to build the ultimate dual-phase multi-ten tonne xenon dark matter detector
- Observatory for other rare physics
- See <u>https://xlzd.org</u> and our joint white paper (<u>arXiv:2203.02309</u>)

