

IRN Terascale

Quantum information in Higgs to tau tau at future lepton colliders

[arXiv:2211.10513]

Mohammad Mahdi Altakach

In collaboration with: P. Lamba, F. Maltoni, K. Mawatari and K. Sakurai

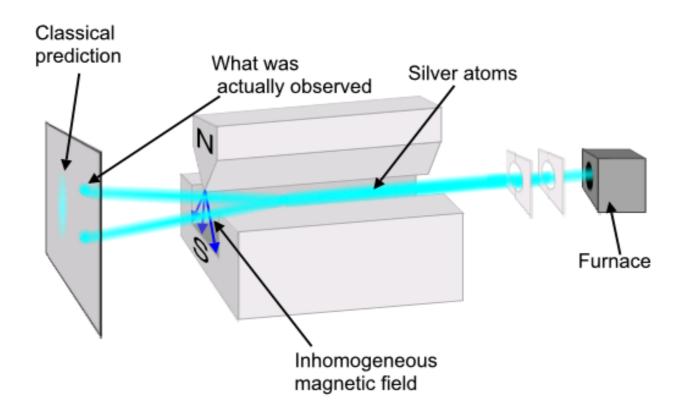
25 Apr. 2023

Part I

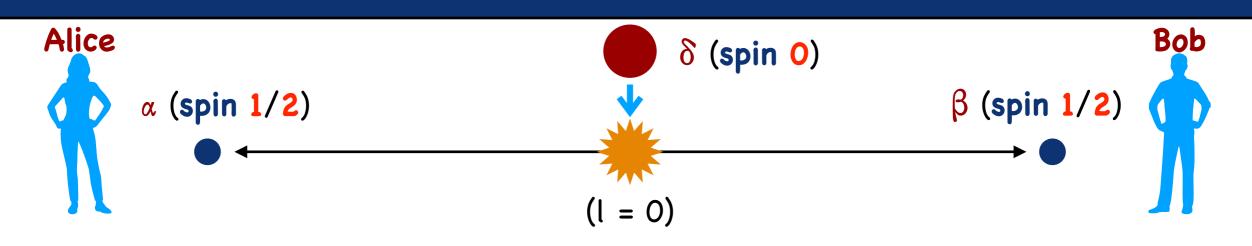
Introduction

Spin

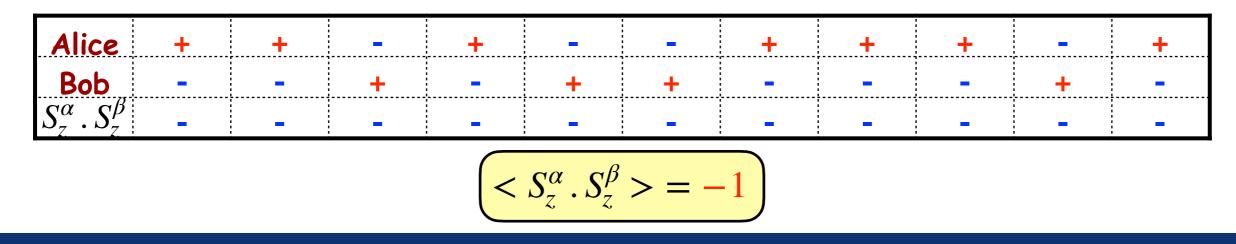
- In classical mechanics, the components of angular momentum (l_x, l_y, l_z) take continuous real numbers.
- A striking fact, found in the Stern-Gerlach experiment, is that the measurement outcome of spin component is either +1 or -1 (in the $\hbar/2$ unit).



Alice & Bob

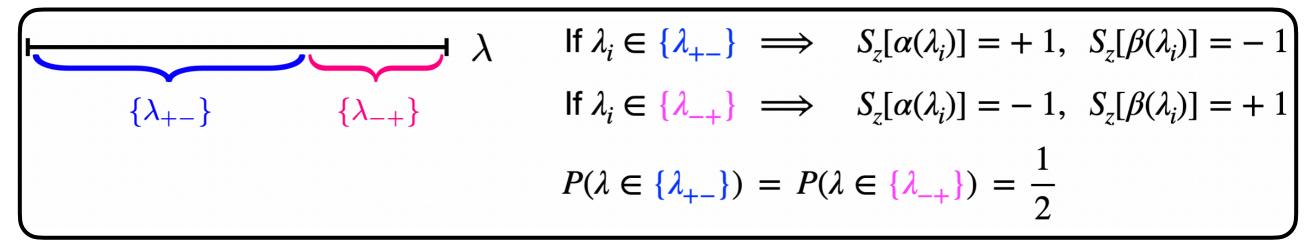


- Alice and Bob receive particles α and β , respectively, and measure the spin zcomponent of their particles. Repeat the process many times.
- Alice and Bob will find their results are completely random (+1 and -1, 50-50%).
- Nevertheless, their result is 100% anti-correlated due to the angular momentum conservation. If Alice's result is +1, Bob's result is always -1 and vice versa.



Hidden variable theory

- The most natural explanation would be as follows:
 - Since their result is sometimes +1 and sometimes -1, it is natural to think that the states of α and β are different in each decay. The result look random, since we don't know in which sate the α and β particles are in each decay.
 - This means we can parametrise the state of α and β by a set of unknown (hidden) variables, λ .
 - For **i-th** decay, their states are: $\alpha(\lambda_i)$, $\beta(\lambda_i)$.



- In this explanation:
 - Particles have definite properties regardless of the measurement.
 - Alice's measurement has no influence on Bob's particle.

(realism)

(locality)

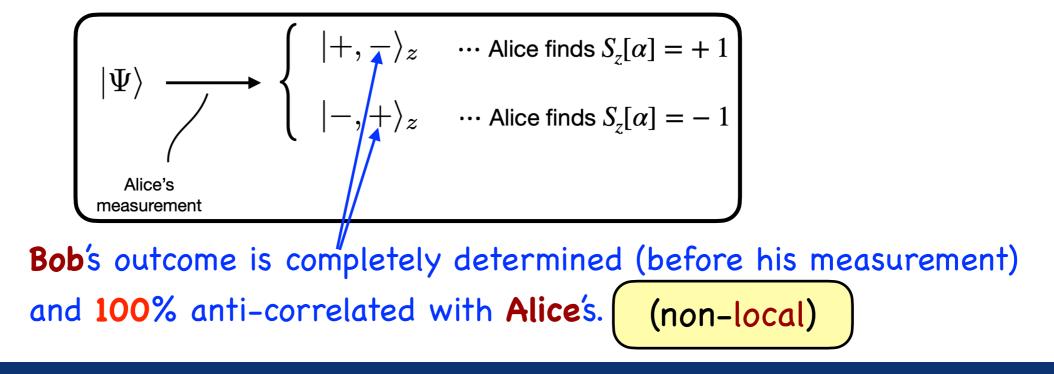
Quantum mechanics (QM)

- The explanation in QM is very different.
- Although their outcomes are different in each decay, QM says the state of the particles are exactly the same for all decays:

$$\begin{array}{c} \overset{\alpha \searrow \quad \checkmark \quad \beta}{|+-\rangle_z - |-+\rangle_z} \\ \uparrow \quad & \uparrow \quad \sqrt{2} \\ \text{up to a phase } e^{i\theta} \end{array}$$

(no realism)

- Before the measurements, particles have no definite spin. Outcomes are undetermined.
- At the moment when Alice makes her measurement, the state collapses into:



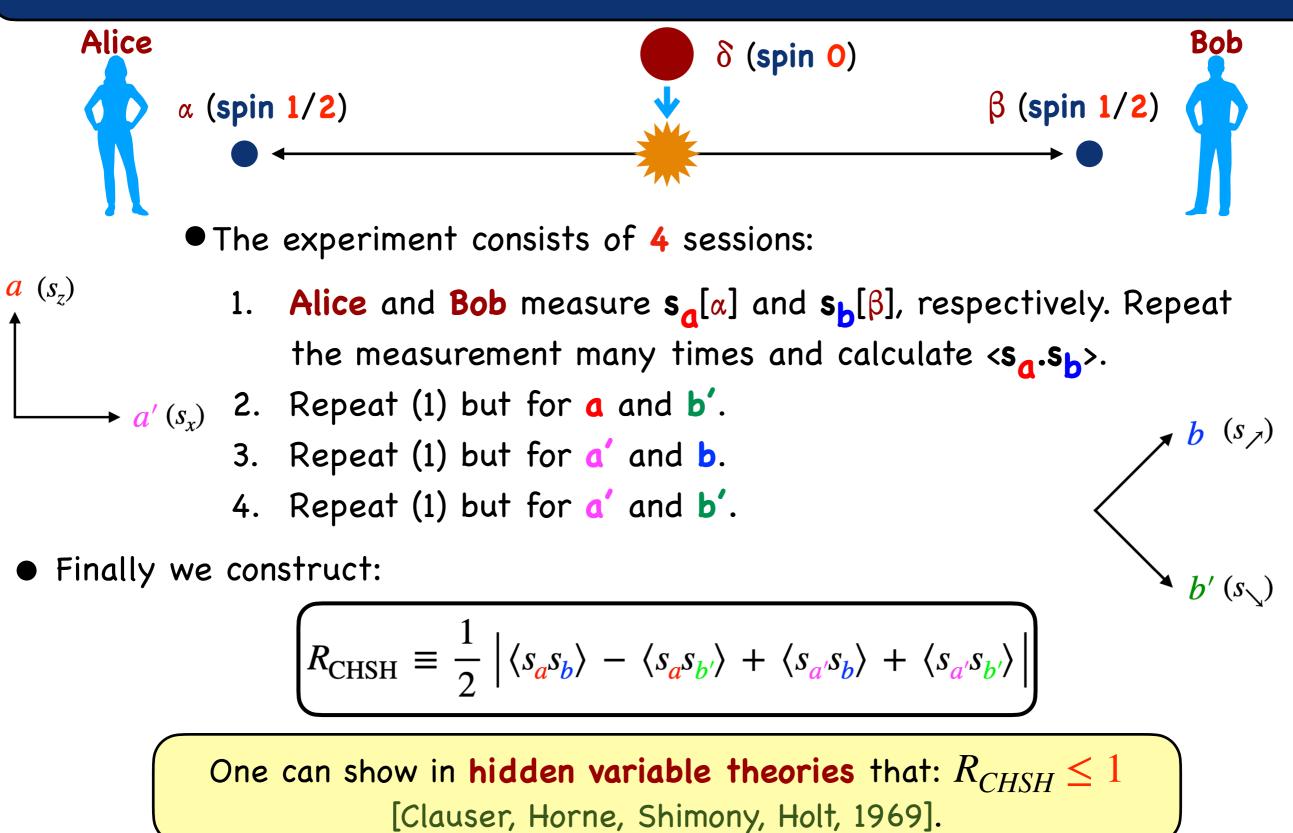
Entanglement

The origin of this bizarre feature is entanglement. $||\Psi\rangle \doteq c_{11}|++\rangle_z + c_{12}|+-\rangle_z + c_{21}|-+\rangle_z + c_{22}|--\rangle_z$ general $||\Psi_{\text{sep}}\rangle \doteq \left[c_1^{\alpha}|+\rangle_z + c_2^{\alpha}|-\rangle_z\right] \otimes \left[c_1^{\beta}|+\rangle_z + c_2^{\beta}|-\rangle_z\right]$ separable $||\Psi_{\text{ent}}\rangle \not\asymp \left[c_1^{\alpha}|+\rangle_z + c_2^{\alpha}|-\rangle_z\right] \otimes \left[c_1^{\beta}|+\rangle_z + c_2^{\beta}|-\rangle_z\right]$ entangled $\left| |\Psi^{(0,0)} \rangle \doteq \frac{|+-\rangle_z - |-+\rangle_z}{\sqrt{2}} \right|$ entangled **Bob's** measurement collapses the state of β to $|+\rangle_{\tau}$ or $|-\rangle_{\tau}$ but does not influence the state of α .

EPR paradox

- Einstein, Podolsky and Rosen (EPR) did not like the QM explanation.
- EPR's local-real requirement: [Einstein, Podolsky, Rosen 1935].
 - Physical observables must be real: they have definite values irrespectively with the measurement.
 - Physical observables must be local: an action in one place cannot influence a physical observable in a space-like separated region.
- QM violates both local and real requirements.
- It seems difficult to experimentally discriminate QM and general hidden variable theories.
- John Bell (1964) derived simple inequalities that can discriminate QM from any local-real hidden variable theories: Bell inequalities.

Bell inequalities



Bell inequalities

• In QM, for: $||\Psi^{(0,0)}\rangle \doteq \frac{|+-\rangle_z - |-+\rangle_z}{\sqrt{2}}$ violates the upper bound of • One can show: $\langle s_a s_b \rangle = \langle \Psi^{(0,0)} | s_a s_b | \Psi^{(0,0)} \rangle = (\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})$ hidden variable **Therefore:** theories! $R_{\text{CHSH}} = \frac{1}{2} \left| \langle s_a s_b \rangle - \langle s_a s_{b'} \rangle + \langle s_{a'} s_b \rangle + \langle s_{a'} s_{b'} \rangle \right|$ $= \frac{1}{2} \left| (\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}) - (\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}') + (\hat{\mathbf{a}}' \cdot \hat{\mathbf{b}}) + (\hat{\mathbf{a}}' \cdot \hat{\mathbf{b}}') \right|$ $-\frac{1}{\sqrt{2}} \qquad \frac{1}{\sqrt{2}} \qquad \frac{1}{\sqrt{2}}$ **, b** ĥ′

Part II

Spin 1/2 biparticle system

Density operator

 \frown Probability of having $|\psi_1
angle$

• For a statistical ensemble $\{\{p_1 : |\psi_1\rangle\}, \{p_2 : |\psi_2\rangle\}, \{p_3 : |\psi_3\rangle\}, \dots\}$, we define the **density operator/matrix**:

$$\hat{\rho} \equiv \sum_{k} p_{k} |\Psi_{k}\rangle \langle \Psi_{k}| \qquad \rho_{ab} \equiv \langle e_{a} |\hat{\rho}| e_{b} \rangle$$

$$0 \le p_k \le 1$$
$$\sum_k p_k = 1$$
$$\langle e_a | e_b \rangle = \delta_{ab}$$

Density matrices satisfy the conditions:

$$\begin{split} \hat{\rho}^{\dagger} &= \hat{\rho} \\ \operatorname{Tr} \hat{\rho} &= 1 \\ \hat{\rho} \text{ is positive definite, that is }^{\forall} |\varphi\rangle; \ \langle \varphi | \hat{\rho} | \varphi \rangle \geq 0. \end{split}$$

• The expectation of an observable \hat{O} is calculated by:

$$\langle \hat{O} \rangle = \operatorname{Tr} \left[\hat{O} \hat{\rho} \right]$$

Spin 1/2 biparticle system

• The spin system of α and β particles has 4 independent bases:

$$\begin{pmatrix} (|e_1\rangle, |e_2\rangle, |e_3\rangle, |e_4\rangle \end{pmatrix} = (|++\rangle, |+-\rangle, |-+\rangle, |--\rangle \end{pmatrix}$$

$$= \rho_{ab} \text{ is a 4x4 matrix (hermitian, Tr=1). It can be expanded as }$$

$$\rho = \frac{1}{4} (1 \otimes 1 + B_i \cdot \sigma_i \otimes 1 + \bar{B}_i \cdot 1 \otimes \sigma_i + C_{ij} \cdot \sigma_i \otimes \sigma_j), \quad B_i, \bar{B}_i, C_{ij} \in \mathbb{R}$$

• For the **spin** operators \hat{s}^{lpha} and \hat{s}^{eta} :

$$\left\{ \langle \hat{s}_{i}^{\alpha} \rangle = Tr[\hat{s}_{i}^{\alpha} \hat{\rho}] = B_{i} \qquad \langle \hat{s}_{i}^{\beta} \rangle = Tr[\hat{s}_{i}^{\beta} \hat{\rho}] = \bar{B}_{i} \qquad \langle \hat{s}_{i}^{\alpha} \hat{s}_{j}^{\beta} \rangle = Tr[\hat{s}_{i}^{\alpha} \hat{s}_{j}^{\beta} \hat{\rho}] = C_{ij}$$

Entanglement

If the state is separable (not entangled):

$$\rho = \sum_{k} p_k \rho_k^{\alpha} \otimes \rho_k^{\beta}, \qquad 0 \le p_k \le 1 \quad \text{and} \quad \sum_{k} p_k = 1$$

Then, a modified matrix by the partial transpose:

$$\rho^{T_{\beta}} = \sum_{k} p_{k} \rho_{k}^{\alpha} \otimes [\rho_{k}^{\beta}]^{T}$$

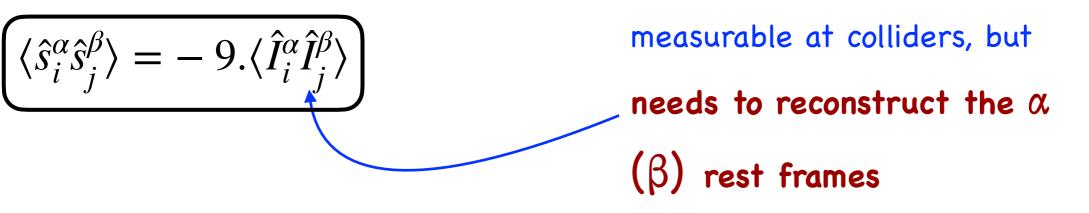
is also a physical **density matrix**, i.e. **Tr=1** and non-negative.

- For biparticle systems, **entanglement** $\iff \rho^{T_{\beta}}$ to be non-positive. [Peres-Horodecki (1996,1997)].
- A simple sufficient condition for entanglement is:

$$\left(E \equiv C_{11} + C_{22} - C_{33} > 1\right)$$

Estimation of C_{ij}

- Let's suppose a spin 1/2 particle α is at rest and spinning in the s direction.
- α decays into a measurable particle \mathbf{I}_{α} and the rest X: $\alpha \rightarrow \mathbf{I}_{\alpha} + (\mathbf{X})$
- The decay distribution is generally given by : $\frac{d\Gamma}{d\Omega} \propto 1 + x_{\alpha}(\hat{I}_{\alpha}, s)$ $x \in [-1, 1]$ is called spin-analysing power and depends on the decay x = 1 for $\tau^{\pm} \rightarrow \pi^{\pm}\nu$ Unit direction vector of \mathbf{I}_{α} measured at the rest frame of α
- One can show for $\alpha + \beta \rightarrow [l_{\alpha} + (\mathbf{X})] + [l_{\beta} + (\mathbf{X})]$:

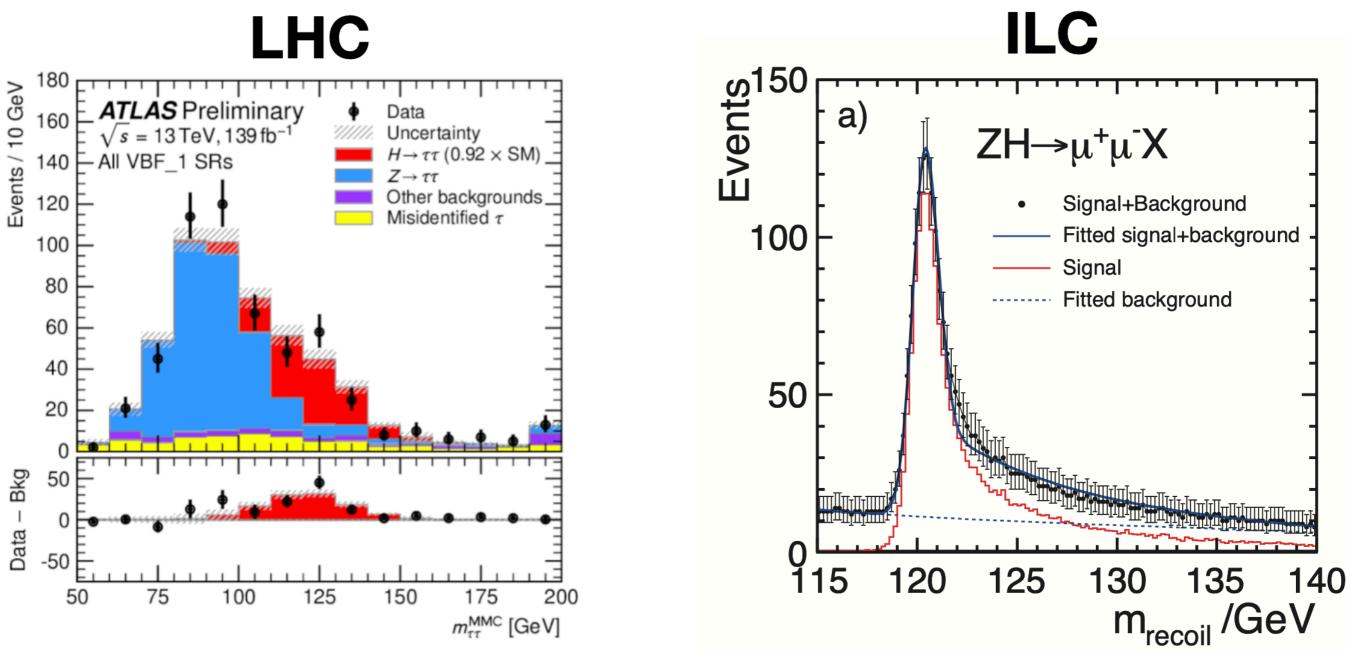


Part III

Higgs to tau tau @ lepton colliders

Why lepton colliders?

- Background $Z/\gamma \rightarrow \tau^+ \tau^-$ is much smaller at lepton colliders
- ullet We need to reconstruct each au rest frame to measure $\widehat{I}.$ This is challenging
 - at hadron colliders since partonic CoM energy is unknown for each event



Simulation

	ILC	FCC-ee
energy (GeV)	250	240
luminosity (ab^{-1})	3	5
beam resolution e^+ (%)	0.18	$0.83 imes 10^{-4}$
beam resolution e^- (%)	0.27	$0.83 imes 10^{-4}$
$\sigma(e^+e^- \to HZ)$ (fb)	240.1	240.3
$\# ext{ of signal } (\sigma \cdot \operatorname{BR} \cdot L \cdot \epsilon)$	385	663
$\# \text{ of background } (\sigma \cdot \mathrm{BR} \cdot L \cdot \epsilon)$	20	36

- Events were generated with Madgraph5
- We incorporate the detector effect by smearing energies of visible particles

$$E^{true} \rightarrow E^{obs} = (1 + \sigma_E . \omega) . E^{true} \qquad \sigma_E = 0.03$$
Random number from a normal distribution

• We perform 100 pseudo-experiment to estimate the statistical uncertainties

Solving kinematical constraints

- To determine the tau momenta, we have to reconstruct the unobserved neutrino momenta: $(p_x^{\nu}, p_y^{\nu}, p_z^{\nu}), (p_x^{\bar{\nu}}, p_y^{\bar{\nu}}, p_z^{\bar{\nu}}).$
- 6 unknowns can be constrained by 2 massshell conditions and 4 energy-momentum conservation:

$$\begin{array}{c} e^{-} & \pi^{+} & \pi^{+} \\ & & & & \\ & & & \\ & & & \\ e^{+} & & & \\ \end{array}$$

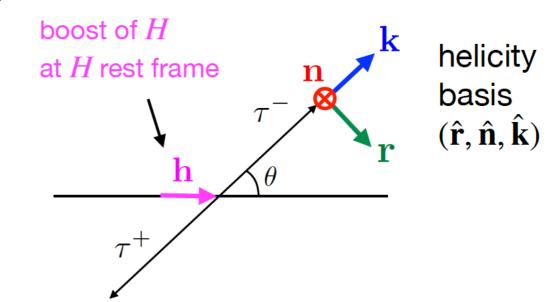
$$m_{\tau}^{2} = (p_{\tau^{+}})^{2} = (p_{\pi^{+}} + p_{\bar{\nu}})$$

$$m_{\tau}^{2} = (p_{\tau^{-}})^{2} = (p_{\pi^{-}} + p_{\nu})$$

$$(p_{ee} - p_{Z})^{\mu} = p_{H}^{\mu} = \left[(p_{\pi^{-}} + p_{\nu}) + (p_{\pi^{+}} + p_{\bar{\nu}})\right]^{\mu}$$

With the reconstructed momenta, we define $(\hat{\pmb{r}}, \hat{\pmb{n}}, \hat{\pmb{k}})$ basis at the Higgs rest frame.

$$\begin{aligned} \hline C_{ij} &= \langle \hat{s}_i^{(\tau^-)} \hat{s}_j^{(\tau^+)} \rangle = -9. \langle \hat{I}_i^- \hat{I}_j^+ \rangle \\ (i, j = r, n, k) \end{aligned}$$



Impact parameter (IP)

- We use the information of the **impact parameter** \vec{b}_{\pm} measurement of π^{\pm} to "correct" the observed energies of τ^{\pm} and Z decay products.
- We check whether the reconstructed τ momenta are consistent with the measured impact parameters.
- We construct the likelihood function and search for the most likely τ momenta.

$$E_{lpha}(\delta_{lpha}) = (1 + \sigma^E_{lpha} \cdot \delta_{lpha}) \cdot E^{
m obs}_{lpha}$$

$$\vec{b}_{+} = |\vec{b}_{+}| \left(\sin^{-1} \Theta_{+} \cdot \vec{e}_{\tau^{+}} - \tan^{-1} \Theta_{+} \cdot \vec{e}_{\pi^{+}} \right)$$

$$\vec{\Delta}_{b_{+}}^{i}(\{\delta\}) \equiv \vec{b}_{+} - |\vec{b}_{+}| \left(\sin^{-1}\Theta_{+}^{i}(\{\delta\}) \cdot \vec{e}_{\tau^{+}}^{i}(\{\delta\}) - \tan^{-1}\Theta_{+}^{i}(\{\delta\}) \cdot \vec{e}_{\pi^{+}} \right)$$

$$L^{i}_{\pm}(\{\delta\}) = \frac{[\Delta^{i}_{b_{\pm}}(\{\delta\})]_{x}^{2} + [\Delta^{i}_{b_{\pm}}(\{\delta\})]_{y}^{2}}{\sigma^{2}_{b_{T}}} + \frac{[\Delta^{i}_{b_{\pm}}(\{\delta\})]_{z}^{2}}{\sigma^{2}_{b_{z}}}$$

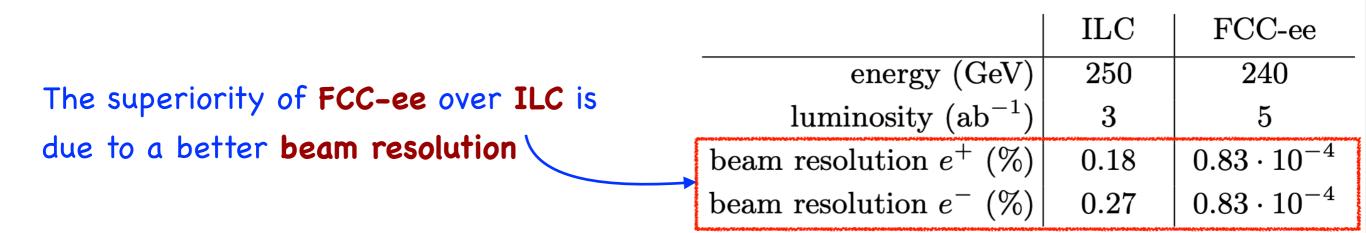
$$L^{i}(\{\delta\}) = L^{i}_{+}(\{\delta\}) + L^{i}_{-}(\{\delta\})$$

 au^{\pm} **Primary Vertex**

Results

	ILC		FCC-ee	
C_{ij}	$ \begin{pmatrix} 0.830 \pm 0.176 & 0.020 \pm 0.146 \\ -0.034 \pm 0.160 & 0.981 \pm 0.1527 \\ -0.001 \pm 0.158 & -0.021 \pm 0.155 \end{pmatrix} $	-0.029 ± 0.156	$ \begin{vmatrix} 0.925 \pm 0.109 & -0.011 \pm 0.110 & 0.038 \pm 0.095 \\ -0.009 \pm 0.110 & 0.929 \pm 0.113 & 0.001 \pm 0.115 \\ -0.026 \pm 0.122 & -0.019 \pm 0.110 & -0.879 \pm 0.098 \end{vmatrix} $	
E_k	2.567 ± 0.279	> 5σ	2.696 ± 0.215 > 50	
$R_{ m CHSH}$	1.103 ± 0.163		1.276 ± 0.094 ~ 30	

SM values:
$$C_{ij} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix}$$
 $E = 3$ Entanglement $\implies E > 1$ $R_{\text{CHSH}} = \sqrt{2} \simeq 1.414$ Bell-nonlocal $\implies R_{\text{CHSH}} > 1$



Part IV

Summary

Summary

- High energy tests of entanglement and Bell inequality has recently attracted an attention.
- We investigated feasibility of quantum property tests @ ILC and FCC-ee.
- Quantum tests require a precise reconstruction of the τ rest frames and IP information is crucial to achieve this.

	Entanglement	Bell-inquality
FCC-ee	> 5 0	~ 3 σ
ILC	> 5 0	

Backup slides

Hidden variable theory

One can show in hidden variable theories:

$$R_{\text{CHSH}} \equiv \frac{1}{2} \left| \langle s_a s_b \rangle - \langle s_a s_{b'} \rangle + \langle s_{a'} s_b \rangle + \langle s_{a'} s_{b'} \rangle \right| \leq 1$$

$$\begin{aligned} |\langle ab\rangle - \langle ab'\rangle| &= \left| \int d\lambda (ab - ab') P \right| & \pm aba'b'P - (\pm aba'b'P) = 0 \\ &= \int d\lambda |ab(1 \pm a'b')P - ab'(1 \pm a'b)P| & a = s_a \\ &= s_b \\ &\leq \int d\lambda (|ab||1 \pm a'b'|P + |ab'||1 \pm a'b|P) \\ &= \int d\lambda [(1 \pm a'b')P + (1 \pm a'b)P] & |ab| = |ab'| = 1 \\ &= 1 \\ 1 \pm a'b'|, |1 \pm a'b| \ge 0 \\ &= 2 \pm (\langle a'b' \rangle + \langle a'b \rangle) \\ &\bullet \quad \tilde{R}_{\text{CHSH}} = \frac{1}{2} (|\langle ab \rangle - \langle ab' \rangle| + |\langle a'b \rangle + \langle a'b' \rangle|) \le 1 \\ &\qquad \qquad \int P(\lambda)d\lambda = 1 \\ &\int P(\lambda)d\lambda = 1 \end{aligned}$$