Precision predictions for exotic lepton production arXiv:2301.03640

Ajjath A. H., Benjamin Fuks, Hua-Sheng Shao & Yehudi Simon

Precision predictions for exotic lepton production arXiv:2301.03640

2 Cross section results

Conclusion and take away message

Ajjath A. H., Benjamin Fuks, Hua-Sheng Shao & Yehudi Simon Precision predictions for exotic lepton production arXiv:2301.03640

0/35

Particles and motivation

96.5 fb⁻¹ (13 TeV B [fb] CMS ---- Asymptotic 95% CL expected **Motivations** ь _{10²} ± 1 std. deviation Precision era of LHC: also ± 2 std. deviation Observed 95% CL. theoretical predictions ! Electroweak production Vector-Like-Leptons: arise in composite or "4321" models 10 (2208.09700) Type-III seesaw (1711.02180): generation of ν masses via $SU(2)_L$ triplet 500 600 700 800 900 1000 VLL mass [GeV] イロト イボト イヨト イヨト

Ajjath A. H., Benjamin Fuks, Hua-Sheng Shao & Yehudi Simon

Particles and motivation

Motivations

- Precision era of LHC: also theoretical predictions !
- Vector-Like-Leptons: arise in composite or "4321" models (2208.09700)
- Type-III seesaw (1711.02180): generation of ν masses via SU(2)_L triplet

Focus on new particles					
Field	Representation	Name			
L ⁰	$(1, 2)_{-1/2}$	VLLO			
$ ilde{N}^0$	$(1, 1)_0$	VLNO			
\tilde{E}^0	$(1,1)_{-1}$	VLEO			
Σ^k	$(1, 3)_0$	Sigw			

Accurate, **precise** and kinematically correct predictions \rightarrow higher orders

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○

Our work

Public UFO models in the FEYNRULES repository

- $\bullet~{\rm So}~{\rm far}~{\rm LO}+{\rm PS}$ available \rightarrow with this work: ${\rm NLO}$
- MADGRAPH5_AMC@NLO (and PYTHIA8) automatically generates NLO (+ PS): try yourself !

Increasing theoretical precision: resummation

- Reducing scale dependance when going to higher order
- $\bullet\,$ Going further by resumming at N^k Large $Logarithm\,$ accuracy

イロト イボト イヨト イヨト

About soft gluon threshold resummation

- Factorization theorem: Soft scale vs. Hard scale
- Large logarithms arising from soft gluon emissions

• Threshold:
$$z=rac{M^2}{\hat{\mathsf{s}}}
ightarrow 1$$

• $z \rightarrow 1 \leftrightarrow N \rightarrow \infty$ in Mellin space, need to resum $\log(1-z)$ or $\log(N)$ terms

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Threshold resummation for Drell-Yan like processes

- Only massless initial states quarks emitting gluons
 → apply to all similar processes: Drell-Yan like
 Universal *soft part* known up to N³LL
 - $$\begin{split} \Delta_{q\bar{q}}^{\mathrm{res}}(N, M^2, \mu_F^2) \Big|_{\mathrm{N}^{\mathrm{k}}\mathrm{LL}} &= \tilde{g}_{0,q\bar{q}}(M^2, \mu_F^2, \mu_R^2) \Big|_{\mathrm{N}^{\mathrm{k}}\mathrm{LO}} \\ &\times \exp\left(g_{1,q\bar{q}}(\omega) \ln N + \sum_{j=2}^{k+1} a_s^{j-2}(\mu_R^2) g_{j,q\bar{q}}(\omega)\right) \end{split}$$

Content

1 Framework and models

2 Cross section results

Conclusion and take away message

Ajjath A. H., Benjamin Fuks, Hua-Sheng Shao & Yehudi Simon Precision predictions for exotic lepton production arXiv:2301.03640

4/35

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 ○ の < @

Figure: Total cross sections NLO/LO comparison

NLO impact on total cross sections

Remarkable features

- Important impact of NLO corrections = O(15 - 50%)
- Outside of LO error bars: scale variation not trustworthy for LO
- K factor not constant
- Same behaviour for all processes: Drell-Yan like

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Figure: Scale ucertainties reduction with resummation

Resummation improvement

Remarkable features

- Decrease of scale uncertainties: NLO = O(5%) NLO + NLL = O(1%)
 - NLO + NNLL = O(0.5%)
- Significant increase: NLO \rightarrow NLO + NNLL = O(10%)
- *α_s* expansion convergence improved

イロト 不得 トイヨト イヨト 二日

Figure: Differential cross section w.r.t. p_T for Type-III triplet

Parton shower for $\ensuremath{p_{\mathrm{T}}}$ distribution

Remarkable features

- LO $\propto \delta(p_T)$ not shown
- LO + PS drops too fast compared to NLO
- NLO + PS distored at low- p_T and captures NLO at high- p_T

▲□▶▲御▶★≧▶★≧▶ 差 の�?

Ajjath A. H., Benjamin Fuks, Hua-Sheng Shao & Yehudi Simon Precision predictions for exotic lepton production arXiv:2301.03640

Content

2 Cross section results

Ajjath A. H., Benjamin Fuks, Hua-Sheng Shao & Yehudi Simon Precision predictions for exotic lepton production arXiv:2301.03640

7/35

In conclusion

- $\bullet~\mathrm{NLO}$ UFO models for VLL and Type-III seesaw
- $\bullet~$ UFO embed the complete models \to any $\rm NLO$ computation and tunable models: any ideas or upcoming interesting searches ?
- Higher orders: accuracy, precision and correct kinematics

NLO + PS now publicly available, ready to use within MADGRAPH5_AMC@NLO. Further improved by resummation with NLO + NNLL/NLO K factor when available Feel free to come back to us if needed.

イロト 不得 トイヨト イヨト 二日

Thank you for your attention!

Precision predictions for exotic lepton production arXiv:2301.03640

Backup

Ajjath A. H., Benjamin Fuks, Hua-Sheng Shao & Yehudi Simon Precision predictions for exotic lepton production arXiv:2301.03640

8/35

Figure: Differential cross section w.r.t. invariant mass for VLL doublet

Figure: Differential cross section w.r.t. invariant mass for VLL doublet

Figure: Differential cross section w.r.t. invariant mass for VLL singlet

Figure: Differential cross section w.r.t. invariant mass for VLL singlet

Figure: Differential cross section w.r.t. invariant mass for VLL singlet

Figure: Differential cross section w.r.t. invariant mass for Type-III triplet

Figure: Differential cross section w.r.t. invariant mass for Type-III triplet

Figure: Differential cross section w.r.t. invariant mass for Type-III triplet

Figure: Differential cross section w.r.t. p_T for VLL doublet

Figure: Differential cross section w.r.t. p_T for VLL doublet

Figure: Differential cross section w.r.t. p_T for VLL doublet

Figure: Differential cross section w.r.t. p_T for VLL singlet

Figure: Differential cross section w.r.t. p_T for VLL singlet

Figure: Differential cross section w.r.t. p_T for VLL singlet

Figure: Differential cross section w.r.t. p_T for Type-III triplet

Figure: Differential cross section w.r.t. p_T for Type-III triplet

Large logs

$$d\hat{\sigma}_{p_1p_2\to\ldots}^N = \frac{d\Phi_n}{F} \overline{\sum} |\mathcal{M}_{p_1p_2\to\ldots}^N|^2$$

For the $q\bar{q} \rightarrow Z$ process at NLO:

$$d\hat{\sigma}_{q\bar{q}\to Z}^{N} = d\sigma_0 \left(1 + \frac{\alpha_s}{2\pi} \left[4C_F \ln^2(\overline{N}) - 4C_F \ln(\overline{N}) \ln(m_Z^2/\mu_F^2) + \tilde{C}_{q\bar{q}\to Z}^{(1)} \right] \right)$$
(1)
(1)
N Mellin conjugate to $z = \frac{Q^2}{\hat{s}}, |N| \to +\infty \longleftrightarrow z \to 1$

Generic logarithms coming from real emissions of *(collinear-)soft* gluons appear to all orders: can be *resummed*.

Expansion of logarithms

Resumming and exponentiation of logarithms produces a new power series in $\alpha_s L$ at large $L = \ln(N)$: Leading-Logarithms (LL), NLL, N^kLL

$\alpha_{\rm s}^{\rm m} {\rm L}^{\rm k}$	LO	NLO	 N ^m LO
LL	m = k = 0	<i>k</i> = 2	 $m+1 \leq k \leq 2m$
NLL	Ø	m = k = 1	 $m \leq k \leq 2m - 1$
N [₽] LL	Ø	Ø	 $m+1-p \leq k \leq 2m-p$

Ajjath A. H., Benjamin Fuks, Hua-Sheng Shao & Yehudi Simon

Eikonal approximation

$$\mathcal{M}_{e} = \mathcal{M}_{h} \frac{i(p_{a} - k + m)}{(p_{a} - k)^{2} - m^{2} + i\epsilon} (-ig_{s} \mathbf{T}^{a} \gamma^{\mu}) u(p_{a}) \epsilon_{\mu}^{*}(k)$$

$$\mathcal{M}_{e} \underset{k\ll p}{\rightarrow} \mathcal{M}_{h} u(p_{a}) g_{s} \mathbf{T}^{a} \frac{-p_{a}^{\mu}}{p_{a} \cdot k + i\epsilon} \epsilon_{\mu}^{*}(k)$$

Effective Feynman rules for soft $(k \ll p)$ gluon radiation and generators depending of particle nature and if it's incomming/outgoing.

Δ building

$$\mathcal{M}_{e} = \mathcal{M}_{Born} u(p_{a}) g_{s} \mathbf{T}^{a} \frac{-p_{a}^{\mu}}{p_{a}.k + i\epsilon} \epsilon_{\mu}^{*}(k)$$
$$d\sigma_{e} \propto \frac{2p_{a}.p_{b}}{E_{a}E_{b}k_{0}^{2}(1 - \cos^{2}(\theta))} d\sigma_{Born}$$

Phase space factorization:

$$d\Phi_2 = rac{d^{d-1}k}{(2\pi)^{d-1}2k_0}rac{2\pi}{\hat{s}}\delta(rac{2k}{\sqrt{\hat{s}}}-1+z)$$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Regularization and resummation

When we add the virtual contribution in the same eikonal approximation to regulate $z \rightarrow 1$ divergences and integrate over phase space we get for each massless leg:

$$I = 2C_i \int_0^1 dz \frac{z^{N-1} - 1}{1 - z} \int_{-1}^1 \frac{d\cos(\theta)}{1 - \cos^2(\theta)} \frac{\alpha_s}{\pi}$$

In the collinear limit $\cos(\theta) \approx 1 - \frac{\theta^2}{2}$ and we can approximate $\frac{d\theta^2}{\theta^2} \approx \frac{dk^2}{k^2}$ where k represents the momentum taken away by the gluon.

$$I = C_i \int_0^1 dz \frac{z^{N-1} - 1}{1 - z} \int_{\mu_F^2}^{(1-z)^2 Q^2} \frac{dk^2}{k^2} \frac{\alpha_s(k^2)}{\pi}$$

We can extrapolate this for multiple emissions, decoupled for this *LL* integral: $+\infty$

$$\Delta_i^{LL} = \sum_{n=0}^{+\infty} \frac{l^n}{n!} = e^l$$

General formalism

In a general way, we can write the factorized formula:

$$d\hat{\sigma}^{N,\, ext{res.}}_{ij
ightarrow ...} \propto ext{Tr} \Big(\mathsf{H} e^{\int \Gamma^{\dagger}} \mathsf{S} e^{\int \Gamma} \Big) \Delta_i \Delta_j$$

(2)

30/35

- H: "hard" matrix, high energy process part
- S: "soft" matrix, low energy emissions and color structure
- $\bullet~\Gamma\colon$ soft anomalous dimension color matrix controlling the evolution over RG of ${\bf S}$
- Δ_i : (colinear-)soft radiations from initial state massless partons

$$\Delta_i = e^{g_1(\alpha_s \ln(\bar{N})) \ln(\bar{N}) + g_2(\alpha_s \ln(\bar{N})) + \dots}$$

Matching

We can also expand $d\hat{\sigma}^{N, res.}$ to NLO in α_s and compare it to the usual NLO cross section (obtained with MADGRAPH5_AMC@NLO).

Matching:
$$d\sigma_{|_{NLO}} + d\sigma^{res.} - d\sigma^{res.}_{|_{NLO}}$$
 valid everywhere

Ajjath A. H., Benjamin Fuks, Hua-Sheng Shao & Yehudi Simon Precision predictions for exotic lepton production arXiv:2301.03640

31/35

Expected behaviours

• We expect the ratio
$$\frac{1}{d\sigma^0/dM^2} \left(\frac{d\sigma^{\text{res.}}}{dM^2} - \frac{d\sigma^{\text{res.}}}{dM^2} \Big|_{\text{NLO}} \right) \xrightarrow[M^2 \ll S_h]{}$$

Away from threshold the logarithmic terms are not important and the behaviour is captured by the first orders of the expansion.

• We expect also
$$\frac{1}{d\sigma^0/dM^2} \left(\frac{d\sigma^{NLO}}{dM^2} - \frac{d\sigma^{res.}}{dM^2} \Big|_{NLO} \right) \xrightarrow{M^2 \to S_h} 0$$

In the threshold regime, the resummed expanded reproduces the behaviour of original cross section.

To obtain a sensible cross section in all ranges we may consider the combination: $\sigma_{|_{\it NLO}}+\sigma^{\it res.}-\sigma^{\it res.}_{|_{\it NLO}}$

Some Feynman rules

33/35

Ajjath A. H., Benjamin Fuks, Hua-Sheng Shao & Yehudi Simon Precision predictions for exotic lepton production arXiv:2301.03640

g functions

$$\begin{split} \tilde{g}_{0,q\bar{q}}^{(1)} &= \frac{-64}{3} + \frac{64}{3}\zeta_2 - 8L_{fr} + 8L_{qr} ,\\ \tilde{g}_{0,q\bar{q}}^{(2)} &= \frac{-1291}{9} + \frac{64\zeta_2}{9} + \frac{368\zeta_2^2}{3} + \frac{4528\zeta_3}{27} \\ &\quad + \frac{188L_{fr}^2}{3} + \frac{4L_{qr}^2}{3} \\ &\quad + L_{fr} \left(\frac{1324}{9} - \frac{1888\zeta_2}{9} + \frac{32\zeta_3}{3}\right) \\ &\quad + L_{qr} \left(\frac{148}{9} - 64L_{fr} + \frac{416\zeta_2}{9} - \frac{32\zeta_3}{3}\right) , \end{split}$$
(3)

with $L_{qr} = \ln \frac{M^2}{\mu_R^2}$, $L_{fr} = \ln \frac{\mu_F^2}{\mu_R^2}$ and ζ_n being the Riemann zeta function.

Lagrangians

$$\begin{aligned} \mathscr{L}_{\text{VLL}} &= \mathscr{L}_{\text{SM}} + i\bar{L}\mathcal{D}L - m_{N}\bar{N}N - m_{E}\bar{E}E + i\bar{N}\mathcal{J}\mathcal{J}N - m_{\tilde{N}}\bar{N}N + i\bar{E}\mathcal{D}\bar{E} - m_{\tilde{E}}\bar{E}\tilde{E} \\ &+ \sum_{\Psi=E,\bar{E}} \left[h\bar{\Psi} \Big(\hat{\kappa}_{L}^{\Psi}P_{L} + \hat{\kappa}_{R}^{\Psi}P_{R} \Big) \ell + \frac{g}{\sqrt{2}}\bar{\Psi}\mathcal{W}^{-}\kappa_{L}^{\Psi}P_{L}\nu_{\ell} \\ &+ \frac{g}{2c_{W}}\bar{\Psi}\mathcal{Z} \Big(\tilde{\kappa}_{L}^{\Psi}P_{L} + \tilde{\kappa}_{R}^{\Psi}P_{R} \Big) \ell + \text{H.c.} \Big] \\ &+ \sum_{\Psi=N,\tilde{N}} \left[h\bar{\Psi}\hat{\kappa}_{L}^{\Psi}P_{L}\nu_{\ell} + \frac{g}{2c_{W}}\bar{\Psi}\mathcal{Z}\tilde{\kappa}_{L}^{\Psi}P_{L}\nu_{\ell} + \frac{g}{\sqrt{2}}\bar{\Psi}\mathcal{W}^{+} \Big(\kappa_{L}^{\Psi}P_{L} + \kappa_{R}^{\Psi}P_{R} \Big) \ell + \text{H.c.} \right], \end{aligned}$$

$$\tag{4}$$

$$\mathscr{L}_{\mathrm{TypeIII}} = \overline{\mathscr{L}}_{\mathrm{SM}} + \mathscr{L}_{\mathrm{kin}} + \left(y_{\ell} \, \Phi^{\dagger} L_{L} \cdot E_{R} + 2y_{\Sigma} \, \Phi \cdot \left[\Sigma^{k} \, T^{k} L_{L} \right] + \mathrm{H.c.} \right). \tag{5}$$

Ajjath A. H., Benjamin Fuks, Hua-Sheng Shao & Yehudi Simon

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □