IRN Terascale @ LPSC Grenoble

Higgs Couplings to Weak Gauge Bosons: Probing 2 New Physics Scales at Once!

 $Florian \ NORTIER$

CEA Paris-Saclay, DRF/IPhT, Orme des Merisiers, Gif-sur-Yvette, France

florian.nortier@ipht.fr

April 25, 2023

Contents

2 Benchmark Model

(3) Results for $h \to WW^*$

4 Epilogue

Introduction – Collaboration

- Based on Upcoming Preprint: arXiv:230X.XXXX (Work in Progress).
- Co-Workers at IPhT:

Raffaele Tito D'AGNOLO (Supervisor)

Gabriele RIGO (Postdoc)

Pablo SESMA (PhD Student)

1. Introduction – Motivations

- Precision Era: Measurement of Higgs Boson Couplings ⇒ Indirect Probe of New Physics!
- Claim: $hVV \equiv hWW$ or hZZ Coupling Deviation \Rightarrow Upper Bound on Scale of New Bosons!
- Goal: Isolate a Model with the Most Conservative Bound (Even If Fine-Tuned).
- Projections of Higgs Coupling Sensitivity at Future Colliders [Snowmass 2021, arXiv.2211.11084]:

1. Introduction – Basic Idea

• *hVV* Deviation from New Particles at Scale $\Lambda_{New} \Rightarrow$ Bosonic Λ_B AND/OR Fermionic Λ_F :

• SMEFT Analysis \Rightarrow Only Information on Λ_{New} .

- Our Work: Beyond SMEFT \Rightarrow Probing 2 New Scales at Once!
- Strategy Already Applied to Other Higgs Boson Couplings:
 - [Arkani-Hamed, Blum, D'Agnolo, Fan, JHEP 01 (2013) 149];
 - [Blum, D'Agnolo, Fan, JHEP 03 (2015) 166].

Introduction

2 Benchmark Model

(3) Results for $h \to WW^*$

4 Epilogue

- Pure BSM Fermionic Extensions: Classification in [Bizot, Frigerio, JHEP 01 (2016) 036].
- Benchmark Model: 2 Vectorlike Pairs (1 Hypercharge Not Fixed):

$$L = (r, n)_Y, \quad N^c = (\overline{r}, n-1)_{-Y-1/2} \qquad \qquad L^c = (\overline{r}, n)_{-Y}, \quad N = (r, n-1)_{Y+1/2}$$

• Renormalizable Lagrangian \Rightarrow Vectorlike Masses & Yukawa Couplings:

$$\mathcal{L}_4 = -yLHN^c - y^c L^c H^{\dagger}N - M_L LL^c - M_N NN^c + \text{h.c.}$$

(+ Suppressed or Vanishing Mixings with SM Fermions).

- **1** Physical Phase: $\varphi = 0, \pi$ (No Constraints from CP Violation).
- Perturbativity $\Rightarrow |y|, |y^c| \leq \mathcal{O}(1).$
- Decoupling Limit: $\Lambda_F \sim M_L, M_N \gg \Lambda_{EW}$.

2. Benchmark Model – New Fermion Contributions to hVV*

- 3 Body Decays: $h \to W^+ W^{-*} \to W^+ e^- \overline{\nu}_e$ & $h \to ZZ^* \to Ze^- e^+$.
- 1-Loop Contributions from New Fermions:

• Relative Coupling Deviation: Maximal when $M_L = M_N \& y = (-1)^n y^c$ (Heavy Fermions).

$$\delta\mu_{hVV} \equiv \frac{g_{hVV} - g_{hVV}^{\rm SM}}{g_{hVV}^{\rm SM}} = \sqrt{\frac{\Gamma(h \to VV^{(*)})}{\Gamma^{\rm SM}(h \to VV^{(*)})}} - 1$$

- Renormalization: MS Parameters in Terms of Electroweak Precision Observables:
 - QED Fine-Structure Constant $\alpha_e(M_Z)$;
 - Fermi Constant *G_F*;
 - Z-Boson Pole Mass M_Z.
 - \Rightarrow $\mu\text{-Independence of }\delta\mu_{hVV}$ ($\mu\equiv$ Renormalization Scale).

2. Benchmark Model – New Fermions \Rightarrow Cutoff \equiv New Bosonic Scale

• hVV^* at Tree Level in SM $\Rightarrow y, y^c \sim O(1)$ for Observable $\delta \mu_{hVV}$.

 \Rightarrow Finite Range of Validity \Rightarrow Cutoff $\Lambda_B \equiv$ New Bosonic Scale!

• Instability of Higgs Potential OR Landau Poles for Yukawa Couplings:

2. Benchmark Model – Reducing the Number of Representations

- **Goal:** Find the Most Conservative Upper Bound on Λ_B .
 - \rightarrow Intuitively: Doublet + Singlet (n = 2, Y = -1/2) \Rightarrow 2 Neutral + 1 Charged (+1).
- Scaling Arguments: Focus on 1 Generation of Vectorlike Leptons! (cf. Backup).
 - No Clear Scaling Argument to Exclude Larger n or Y.
 - Colored Representations OR Multiple Generations \Rightarrow Lower Λ_B .

• Landau Poles μ_{LP} for Electroweak Gauge Couplings: (1-Loop RGE's, Mass Scale $m \equiv \Lambda_F$)

• $U(1)_Y$ Weak Hypercharge with $(n = 2, y = y^c = 0) \Rightarrow n \lesssim 6.$

•
$$SU(2)_W$$
 Weak Isospin with $(Y=0,y=y^c=0)$ \Rightarrow $Y\lesssim 10$

2. Benchmark Model – New Fermions ⇒ Oblique Electroweak Corrections

- New Fermions \Rightarrow 1-Loop Corrections to Self-Energies of EW Gauge Bosons \Rightarrow Main Constraints.
- Peskin-Takeuchi Parameters: S, T & U [Peskin, Takeuchi, PRD 46 (1992) 381-409]. \Rightarrow S & T Fit with U = 0 [Gfitter Group, EPJC 78 (2018) 8, 675]:

Introduction

2 Benchmark Model

(3) Results for $h \to WW^*$

④ Epilogue

3. Results for $h \rightarrow WW^*$ – Doublet + Singlet

Doublet + Singlet Leptons (n = 2, Y = -1/2) \Rightarrow 2 Neutral (Q = 0) + 1 Charged (+1):

3. Results for $h \rightarrow WW^*$ – Higher-Hypercharge

Increasing $Y \Rightarrow$ Excluded by S & T.

3. Results for $h \rightarrow WW^*$ – Higher-Representations

Increasing $n \Rightarrow \text{Lower } \Lambda_B$ for Heavy Leptons:

Plots for $M_L = M_N$ (2-Loop RGE's with SARAH).

Introduction

2 Benchmark Model

(3) Results for $h \to WW^*$

4 Epilogue

4. Epilogue (2/2)

Work in Progress:

- Doublet + Singlet Leptons (Y = -1/2) \Rightarrow Light Neutral Lepton.
 - \Rightarrow Collider Constraints? (\sim Higgsino-Bino System) Oblique EW Corrections?
- Collider Constraints for Higher-Representations? Higher-Hypercharges?
- Study of $\delta \mu_{hZZ} \Rightarrow$ Similar Results.

3 Punchlines:

- Pure Fermionic Extensions of SM \Rightarrow Finite Range of Validity:
 - \Rightarrow Upper Bound on New Bosonic Scale!
 - \Rightarrow Most Conservative Upper Bound ($\delta \mu_{hVV} \neq 0$) For Doublet + Singlet (Q = 0).
- If $\delta \mu_{hVV} \neq 0$ at HL-LHC (~1% Sensitivity) \Rightarrow Look for New Bosons! (Minimal Model)
- If $\delta \mu_{hVV} \neq 0$ at FCC (~ 0.1% Sensitivity) \Rightarrow New Fermions? \Rightarrow New Bosons Not Far!

Thank You for Your Attention!

5. Backup

Introduction

2 Benchmark Model

(3) Results for $h \to WW^*$

4 Epilogue

- Pure BSM Fermionic Extensions: Classification in [Bizot, Frigerio, JHEP 01 (2016) 036].
 ⇒ Consider Only Relevant Models for Higgs Couplings.
- Minimal Extension: 1 Vectorlike Pair + 1 Majorana \Rightarrow Fixed Hypercharged.
- Benchmark Model: 2 Vectorlike Pairs (1 Hypercharge Not Fixed):

 $L = (r, n)_Y, \quad N^c = (\overline{r}, n-1)_{-Y-1/2} \qquad \qquad L^c = (\overline{r}, n)_{-Y}, \quad N = (r, n-1)_{Y+1/2}$

• Renormalizable Lagrangian:

$$\mathcal{L}_4 = -yLHN^c - y^c L^c H^{\dagger}N - M_L LL^c - M_N NN^c + \text{h.c.}$$

• Few Special Cases: $r = \overline{r}$, Y = 0, $(n - 1 \text{ odd}) \Rightarrow$ Other Possible Terms. \Rightarrow Qualitatively Similar (No Detailed Study).

• Landau Pole: QCD Coupling g_s Blows Up Near $\Lambda_F \Rightarrow r \leq 8$.

5. Backup – Scaling Arguments (1/2)

- Colored Fermions: Future Colliders ($\delta \mu_{hVV} \gtrsim 0.1\%$) $\Rightarrow y^4$ Term Dominates!
 - $\Lambda_B \equiv$ Landau Pole: Fixed $y_r = \sqrt{r}y \Rightarrow$ Same Λ_B for Any r:

$$\delta g_{hVV} \sim rac{g_V^2}{16\pi^2} \cdot rac{y_r^4 v^2}{r\,\Lambda_F^2}\,.$$

• $\Lambda_B \equiv$ Vacuum Instability: Fixed $y_r = \sqrt[4]{r}y \Rightarrow$ Same Λ_B for Any r:

$$\delta g_{hVV} \sim rac{g_V^2}{16\pi^2} \cdot rac{y_r^4 v^2}{\Lambda_F^2} \, .$$

- \Rightarrow Smaller δg_{hVV} than for Color Singlets + Stronger Collider Constraints on $\Lambda_F \Rightarrow$ Lower Λ_B .
- N Generations of Vectorlike Fermions: Similar Arguments.

5. Backup – Scaling Arguments (2/2)

• Scaling of δg_{hVV} from 2 Diagrams:

• Higher-Isospin Representations: Large n:

$$\delta g_{hVV} \sim \frac{g_V^2}{16\pi^2} \left(\beta_1 \, n^3 \, \frac{y^2 v^2}{\Lambda_F^2} + \beta_2 \, n \, \frac{y^4 v^2}{\Lambda_F^2} \right) \,, \quad 16\pi^2 \frac{dy}{d \log \mu} \sim ny^3 \,, \quad 16\pi^2 \frac{d\lambda}{d \log \mu} \sim -ny^4 + n\lambda y^2 \,.$$

 \Rightarrow No Scaling Argument to Exclude Higher-Representations! Likewise for Higher-Hypercharges!

5. Backup – Higgs Potential Instability

- Instability Scale Not Sensitive to Top Quark Mass (M_t vs $2M_t$ on Left Plot).
- Ambiguity on Higgs Quartic Coupling: (Right Plot)
 - Gauge Invariant (Solid Lines) \Rightarrow The One We Used.
 - Effective Potential (Dashed Lines) \Rightarrow Not So Different.

5. Backup – Different Yukawa Couplings

Work in Progress: Doublet + Singlet Leptons (Y = -1/2) with $y \neq y^c$. \Rightarrow Lower Cutoff Λ_B (Need to Add *S* & *T* Constraints).

5. Backup – Low Mass (1/2)

Work in Progress: Doublet + Singlet Leptons (Y = -1/2) \Rightarrow Light Neutral Lepton. \rightarrow Oblique EW Corrections?

5. Backup – Low Mass (2/2)

Work in Progress: Collider Constraints ~ Higgsino-Bino System (Plot for $M_L = M_N$):

24