Gravity mediated supersymmetry breaking: Impact of new "hybrid" superfield sector on the Higgs sector

Robin Ducrocq

IPHC - Strasbourg

robin.ducrocq@iphc.cnrs.fr

IRN Terascale@Grenoble: April, 25, 2023 With G. Moultaka (LUPM) & M. Rausch de Traubenberg (IPHC)

Overview

- New solutions in Gravity-Mediated Supersymmetry Breaking
 - Soni-Weldon solutions & New solutions
- 2 S2MSSM: NMSSM-like with two hybrid fields $\{S^1, S^2\}$
 - Presentation of the model

3) Preliminary analysis: impact of V_{HARD} on the Higgs boson mass

- Assumptions & constraints
- Mass matrix and order of magnitude of the S-loop
- Numerical computation of the one-loop contributions on m_h

S2MSSM: Mass matrix and F-term analysis

- $\{S, z\}$ mass matrix in the general case
- From the NMSSM to the S2MSSM
- S2MSSM: Mass matrix and F-term analysis

5 Conclusion & Outlooks

イロト イボト イヨト イヨト

Outline

New solutions in Gravity-Mediated Supersymmetry Breaking

- Soni-Weldon solutions & New solutions
- 2 S2MSSM: NMSSM-like with two hybrid fields $\{S^1,S^2\}$
 - Presentation of the model

3) Preliminary analysis: impact of V_{HARD} on the Higgs boson mass

- Assumptions & constraints
- Mass matrix and order of magnitude of the S-loop
- Numerical computation of the one-loop contributions on m_h

S2MSSM: Mass matrix and F-term analysis

- $\{S, z\}$ mass matrix in the general case
- From the NMSSM to the S2MSSM
- S2MSSM: Mass matrix and F-term analysis

5 Conclusion & Outlooks

< ロ > < 同 > < 回 > < 回 >

Gravity-Mediated Supersymmetry Breaking

Soni-Weldon solutions (Phys. Let. B, 1983) & New solutions (Int. J. Mod. Phys. A, 2019)

SUSY can be broken in Supergravity:

Gravitationnal interactions between a Hidden Sector $\{z^i\}$ and the Matter Sector $\{\Phi^a\}$

Gravity-Mediated Supersymmetry Breaking

Soni-Weldon solutions (Phys. Let. B, 1983) & New solutions (Int. J. Mod. Phys. A, 2019)

SUSY can be broken in Supergravity:

Gravitationnal interactions between a Hidden Sector $\{z^i\}$ and the Matter Sector $\{\Phi^a\}$

Usual solutions (Soni-Weldon) Kähler potential & Superpotential:

 $egin{aligned} &\mathcal{K}(z,z^{\dagger},\Phi,\Phi^{\dagger})=m_{
ho}^{2}z^{i}z_{i}^{\dagger}+\Phi^{a}\Phi_{a}^{\dagger}\ &\mathcal{W}(z,\Phi)=m_{
ho}^{2}\mathcal{W}_{2}(z)+m_{
ho}\mathcal{W}_{1}(z)+\mathcal{W}_{0}(z,\Phi) \end{aligned}$

Gravitino mass: $m_{3/2} = e^{K/(2m_p^2)} \langle W \rangle / m_p^2 = M$

SUSY Breaking terms: V_{SOFT}

- good renormalisation properties ($\propto \log \Lambda$)
- holomorphic or anti-holomorphic terms (ex: $\phi^2, (\phi^{\dagger})^3...$) + soft mass terms $\phi^{\dagger}\phi$

Used for all phenomenological studies since the 80's

▶ < ∃ ▶</p>

= nar

SUSY can be broken in Supergravity:

Gravitationnal interactions between a Hidden Sector $\{z^i\}$ and the Matter Sector $\{\Phi^a\}$

Usual solutions (Soni-Weldon) Kähler potential & Superpotential:

$$K(z, z^{\dagger}, \Phi, \Phi^{\dagger}) = m_p^2 z^i z_i^{\dagger} + \Phi^a \Phi_a^{\dagger}$$
$$W(z, \Phi) = m_p^2 W_2(z) + m_p W_1(z) + W_0(z, \Phi)$$

Gravitino mass: $m_{3/2} = e^{K/(2m_p^2)} \langle W \rangle / m_p^2 = M$ **SUSY Breaking terms:** V_{SOFT}

- good renormalisation properties ($\propto \log \Lambda$)
- holomorphic or anti-holomorphic terms (ex: $\phi^2, (\phi^{\dagger})^3...$) + soft mass terms $\phi^{\dagger}\phi$

Used for all phenomenological studies since the 80's

New Solutions Kähler potential & Superpotential:

$$\begin{split} & \mathcal{K}(z, z^{\dagger}, \Phi, \Phi^{\dagger}) = m_{\rho}^{2} z^{i} z_{i}^{\dagger} + \Phi^{a} \Phi_{a}^{\dagger} + \mathbf{S}^{p} \mathbf{S}_{p}^{\dagger} \\ & \mathcal{W}(z, \Phi) = m_{\rho} \mathcal{W}_{1}(z, \mathbf{S}) + \mathcal{W}_{0}(z, \mathbf{S}, \Phi) \\ & \left\{ \begin{array}{l} \mathcal{W}_{1}(z, \Phi) = \mathcal{W}_{1,0}(z) + \mathcal{W}_{1,\rho}(z) \mu_{\rho}^{*} \mathbf{S}^{p} \\ \mathcal{W}_{0}(z, \Phi) = \mathcal{W}_{0,\rho}(z) \mathbf{S}^{p} + \mathcal{W}_{0}(z, \mathcal{U}, \Phi) \\ & \langle \mathbf{S}^{p} \rangle \ll m_{\rho} \end{array} \right\} \end{split}$$

S: "hybrid sector", $U^{pq} = \mu^q S^p - \mu^p S^q$ Need at least 2 S for direct EW coupling Gravitino mass: $m_{3/2} = e^{K/(2m_p^2)} \langle W \rangle / m_p^2 = \frac{M^2}{m_p}$ SUSY Breaking terms: $V_{SOFT} + V_{HARD}$

- HARD: quadric divergences... but parametrically suppressed!

Outline

- New solutions in Gravity-Mediated Supersymmetry Breaking
 Soni-Weldon solutions & New solutions
- 2 S2MSSM: NMSSM-like with two hybrid fields $\{S^1, S^2\}$
 - Presentation of the model

3) Preliminary analysis: impact of V_{HARD} on the Higgs boson mass

- Assumptions & constraints
- Mass matrix and order of magnitude of the S-loop
- Numerical computation of the one-loop contributions on m_h

S2MSSM: Mass matrix and F-term analysis

- $\{S, z\}$ mass matrix in the general case
- From the NMSSM to the S2MSSM
- S2MSSM: Mass matrix and F-term analysis

5 Conclusion & Outlooks

< ロ > < 同 > < 回 > < 回 >

Presentation of the model (R. Ducrocq, Proceedings 34th IGCTMP, 2023 & R. Ducrocq, PhD. Thesis, 2021)

How to incorporate the MSSM in these new solutions with non-flat Kähler potential?

・ 回 ト ・ ヨ ト ・ ヨ ト

э.

Presentation of the model (R. Ducrocq, Proceedings 34th IGCTMP, 2023 & R. Ducrocq, PhD. Thesis, 2021)

ъ

Presentation of the model (R. Ducrocq, Proceedings 34th IGCTMP, 2023 & R. Ducrocq, PhD. Thesis, 2021)

글 🖌 🔺 글 🕨

ъ

Presentation of the model (R. Ducrocq, Proceedings 34th IGCTMP, 2023 & R. Ducrocq, PhD. Thesis, 2021)

Superfields content ($G = SU(3)_c \times SU(2)_L \times U(1)_Y$)

Observable sector	Hidden Sector	Hybrid Sector
$\Phi_{MSSM} = \{H_U, H_D, Q, L, U, D, E\}$	$\{z^i\}$	$\mathcal{S} = \{\mathcal{S}^1,\mathcal{S}^2\} ightarrow\mathcal{U} = \mu_2\mathcal{S}^1-\mu_1\mathcal{S}^2$

Non-universal Kähler potential and NMSSM-like Superpotential

$$\begin{array}{l} \mathcal{K}(\mathbf{z},\mathbf{z}^{\dagger},\mathbf{\Phi},\mathbf{\Phi}^{\dagger}) = m_{p}^{2}\mathbf{z}^{\dagger}\mathbf{z}_{i}^{\dagger} + \Lambda_{s}(\mathbf{z})\mathbf{\Phi}_{a}^{\dagger}\mathbf{\Phi}^{a} + \mathbf{S}_{p}^{\dagger}\mathbf{S}^{p} \\ \mathcal{W}(\mathbf{z},\mathbf{\Phi},\mathbf{S}) = m_{p}W_{1}(\mathbf{z},\mathbf{S}) + W_{0}(\mathbf{z},\mathbf{S},\mathbf{\Phi}) \end{array} \quad \text{with} \quad \left\{ \begin{array}{l} W_{1}(\mathbf{z},\mathbf{S}) = W_{1,0}(\mathbf{z}) + W_{1,p}(\mathbf{z})\mu_{p}^{*}\mathbf{S}^{p} \\ W_{0}(\mathbf{z},\mathbf{\Phi},\mathbf{S}) = W_{0,p}(\mathbf{z})\mathbf{S}^{p} + \Xi(\mathbf{z},\mathcal{U},\mathbf{\Phi}) \end{array} \right\}$$

$$\Xi(\mathbf{z},\mathcal{U},\mathbf{\Phi}) = \lambda(z)\mathcal{U}H_U \cdot H_D + \frac{1}{6}\kappa(z)\mathcal{U}^3 + y_U(z)Q \cdot H_UU - y_D(z)Q \cdot H_DD - y_E(z)L \cdot H_DE$$

 $\Lambda_a(\textbf{z})\Phi_a^{\dagger}\Phi^a: \text{ need a rescale of the fields } \Phi^a \rightarrow 1/\sqrt{\langle \Lambda_a \rangle}\Phi^a \text{ which modify the couplings } (\langle \Lambda_a \rangle > 0)_{\text{B}}$

Outline

- New solutions in Gravity-Mediated Supersymmetry Breaking
 - Soni-Weldon solutions & New solutions
- 2 S2MSSM: NMSSM-like with two hybrid fields $\{S^1,S^2\}$
 - Presentation of the model

I Preliminary analysis: impact of V_{HARD} on the Higgs boson mass

- Assumptions & constraints
- Mass matrix and order of magnitude of the S-loop
- Numerical computation of the one-loop contributions on m_h

S2MSSM: Mass matrix and F-term analysis

- $\{S, z\}$ mass matrix in the general case
- From the NMSSM to the S2MSSM
- S2MSSM: Mass matrix and F-term analysis

5 Conclusion & Outlooks

イロト 不得下 イヨト イヨト

Goal: Phenomenological analysis of this new model (mass spectrum, one-loop contributions, ...) **Very complicated model** (New contributions, form of the gravitino mass, ...)

A B M
 A
 B M
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Preliminary analysis: impact of V_{HARD} on the Higgs boson mass Assumptions & constraints

Goal: Phenomenological analysis of this new model (mass spectrum, one-loop contributions, ...) Very complicated model (New contributions, form of the gravitino mass, ...) Constraints:

Vanishing of the cosmological constant: $\langle V \rangle = 0$ & Minimisation of the potential: $\left\langle \frac{\partial V}{\partial X^A} \right\rangle = 0$

Goal: Phenomenological analysis of this new model (mass spectrum, one-loop contributions, ...) **Very complicated model** (New contributions, form of the gravitino mass, ...) **Constraints:**

Vanishing of the cosmological constant: $\langle V \rangle = 0$ & Minimisation of the potential: $\left\langle \frac{\partial V}{\partial X^A} \right\rangle = 0$

Example of new hard contributions:

$$\frac{M_2^2}{m_p^2} e^{|\langle z \rangle|^2} \big(\Phi^a \Phi_a^\dagger + S^p S_p^\dagger \big) \big(4|\xi_{3/2}|^2 - 2 \big) \mathfrak{i}_r \overline{\mathfrak{i}}^r \mathbf{S}_t^r \quad \text{with:} \quad \mathfrak{i}_p = \mathcal{I}_p / (m_p M_2)$$

Can close very heavy S-loop and contribute to Φ -mass, etc.,... \Rightarrow shift all mass spectrum upwords

同 ト イヨ ト イヨ ト ヨ の へ ()

Goal: Phenomenological analysis of this new model (mass spectrum, one-loop contributions, ...) **Very complicated model** (New contributions, form of the gravitino mass, ...) **Constraints:**

Vanishing of the cosmological constant: $\langle V \rangle = 0$ & Minimisation of the potential: $\left\langle \frac{\partial V}{\partial X^A} \right\rangle = 0$

Example of new hard contributions:

$$\frac{M_2^2}{m_\rho^2} e^{|\langle z \rangle|^2} \big(\Phi^a \Phi_a^\dagger + S^\rho S_\rho^\dagger \big) \big(4|\xi_{3/2}|^2 - 2 \big) \mathfrak{i}_r \overline{\mathfrak{i}}^r \mathbf{S}_{\mathbf{t}}^r \quad \text{with:} \quad \mathfrak{i}_\rho = \mathcal{I}_\rho / (m_\rho M_2)$$

Can close very heavy S-loop and contribute to Φ -mass, etc.,... \Rightarrow shift all mass spectrum upwords

Before full phenomenological analysis: need simple preliminary studies to understand the real nature of such solutions

only consider
$$\Phi^a = \{H_U, H_D\}$$
 (no Squark/Slepton sector)
 $\langle S^p \rangle \& \langle \Phi^a \rangle \simeq 0$

No direct couplings between the matter & the hybrid sector: $\Xi(z, \Phi, U) = \Xi(z, \Phi)$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

Mass matrix and order of magnitude of the S-loop

Assume only one field in the hiden sector z

To first order of $1/m_p$, the two sectors $\{z, S^p\}$ and $\{H_U, H_D\}$ can be diagonalised separately

S & Z	H(S & Z)
H(S & Z)	н

Can analyse only the $\{S, Z\}$ sector in a first approximation (off-diagonal H(S & Z) negligible)

IRN Terascale 2023 (R. Ducrocq)

Mass matrix and order of magnitude of the S-loop

Assuming {S^p} (p = 1,...,n): Only one state mix with z, & (n-1) degenerated states with $m_{S^p}^2 = m_{3/2}^2$! $\mathbb{M}_{S,Z}^2 = \begin{pmatrix} |m_{3/2}|^2 \mathbb{I}_{n-1} & 0 & 0\\ 0 & |m_{3/2}|^2 + b|\mathcal{I}|^2 & c|\mathcal{I}|\\ 0 & \bar{c}|\mathcal{I}| & d \end{pmatrix}$

Mass matrix and order of magnitude of the S-loop

 \rightarrow $\left(\begin{array}{c} s\\ s\end{array}\right)$

Assuming {S^p} (p = 1, ..., n): Only one state mix with z, & (n - 1) degenerated states with $m_{S^p}^2 = m_{3/2}^2$! $M_{S,Z}^2 = \begin{pmatrix} |m_{3/2}|^2 \mathbb{I}_{n-1} & 0 & 0\\ 0 & |m_{3/2}|^2 + b|\mathcal{I}|^2 & c|\mathcal{I}|\\ 0 & \bar{c}|\mathcal{I}| & d \end{pmatrix}$

Consider only one S-field to calculate the order of magnitude: $S = \zeta' \sin \theta + S' \cos \theta$

$$\delta \mathcal{O} pprox rac{1}{16\pi^2} (m_{\zeta'}^2 \sin^2 heta + m_{S'}^2 \cos^2 heta)$$

Numerical computation of the one-loop contributions on m_h

Approximation of One-loop Higgs boson mass

Several free parameters:

$$\begin{split} m_h^{(1L)} &= f(m_h^{(T.L.+1/oop~Soft)}, m_{3/2}, \langle z \rangle, \langle \mathfrak{d}_z^2 w \rangle, \xi_{3/2}, M_{GUT}, \ldots) \\ \text{Tree-level} + 1\text{-loop SOFT: } m_h^{(T.L.+1/oop~Soft)} &= 115 \text{ GeV} \end{split}$$

Notations:
$$W = M_{GUT}^3 w, \rho = \langle \partial_z \partial_\phi W_0 / W \rangle$$

IRN Terascale 2023 (R. Ducrocq)

Numerical computation of the one-loop contributions on m_h

Notations:
$$W = M_{GUT}^3 w, \rho = \langle \partial_z \partial_\phi W_0 / W \rangle$$

Approximation of One-loop Higgs boson mass

Several free parameters:

 $m_h^{(1L)} = f(m_h^{(T.L.+1/oop Soft)}, m_{3/2}, \langle z \rangle, \langle \mathfrak{d}_z^2 w \rangle, \xi_{3/2}, M_{GUT}, \ldots)$

 $\label{eq:constraint} \mathsf{Tree-level} \, + \, 1 \text{-loop SOFT:} \, \, m_h^{(\textit{T.L.}+1/\textit{oop Soft})} = 115 \, \, \mathsf{GeV}$

 $\langle z \rangle \approx$ 4: Several fields in the hidden sector?

The same results can be naturally obtained by extending the hidden sector with n fields:

$$\frac{1}{m_{p}^{4}} e^{\sum_{i} |\langle \mathbf{z}^{i} \rangle|^{2}} \left(\Phi \Phi^{\dagger} + S^{p} S_{p}^{\dagger} \right) \left(4 \sum_{i} |\xi_{3/2i}|^{2} - 2 \right) \mathcal{I}_{r} \bar{\mathcal{I}}^{t} S' S_{t}^{\dagger} \\ - \frac{2}{m_{p}^{2}} e^{\sum_{i} |\langle \mathbf{z}^{i} \rangle|^{2}} \bar{\mathcal{I}}^{q} S_{q}^{\dagger} \mathcal{U} H_{U} \cdot H_{D}$$

Four fields z^i with $\langle z^i \rangle \approx m_p$ from the hidden sector may lead to $m_h \approx 125$ GeV. It remains a fine-tuning in the hidden sector

Outline

- New solutions in Gravity-Mediated Supersymmetry Breaking
 - Soni-Weldon solutions & New solutions
- 2 S2MSSM: NMSSM-like with two hybrid fields $\{S^1,S^2\}$
 - Presentation of the model

I Preliminary analysis: impact of V_{HARD} on the Higgs boson mass

- Assumptions & constraints
- Mass matrix and order of magnitude of the S-loop
- Numerical computation of the one-loop contributions on m_h

S2MSSM: Mass matrix and F-term analysis

- $\{S, z\}$ mass matrix in the general case
- From the NMSSM to the S2MSSM
- S2MSSM: Mass matrix and F-term analysis

5 Conclusion & Outlooks

イロト イヨト イヨト

 $\{S, z\}$ mass matrix in the general case

Preliminary analysis: helps for the general analysis of the S2MSSM

Asuming the general form of the S2MSSM:

Effects from the vevs $\langle S^{p} \rangle$ & from the direct couplings $W_{0}(z,\Phi,\mathcal{U})$

・ 「 ト ・ ヨ ト ・ ヨ ト ・

 $\{S,z\}$ mass matrix in the general case

Preliminary analysis: helps for the general analysis of the S2MSSM

Asuming the general form of the S2MSSM:

Effects from the vevs $\langle S^{p} \rangle$ & from the direct couplings $W_{0}(z, \Phi, U)$

Example: Does the structure of the mass matrix in the $\{S, z\}$ sector remain? A lot of new contributions in the mass matrix

$$\mathbb{M}^2_{\mathbf{S},\mathbf{Z}} = \begin{pmatrix} \delta_p{}^q a' + e' + b' \mathcal{J}_p \bar{\mathcal{J}}^q & c' \mathcal{J}_p + f'_p \\ \bar{c'} \bar{\mathcal{J}}^q + \bar{f'}^q & d' \end{pmatrix} \quad \text{with} \quad \mathcal{J}_p = \mathcal{I}_p + \langle \partial_p W_0 \rangle \quad , \quad \partial_p W_0 = \frac{\partial W_0}{\partial S^p}$$

The structure is more complex... needs a complete numerical analysis of the mass spectrum

Loop contributions will not be the same... Do such models still need several fields $\{z^i\}$ for $m_h^{(1L)} = 125$ GeV?

▲冊▶ ▲臣▶ ★臣▶ 臣 めへで

 $\{S,z\}$ mass matrix in the general case

Preliminary analysis: helps for the general analysis of the S2MSSM

Asuming the general form of the S2MSSM:

Effects from the vevs $\langle S^{p} \rangle$ & from the direct couplings $W_{0}(z, \Phi, U)$

Example: Does the structure of the mass matrix in the $\{S, z\}$ sector remain? A lot of new contributions in the mass matrix

$$\mathbb{M}^2_{\mathbf{S},\mathbf{Z}} = \begin{pmatrix} \delta_p{}^q a' + e' + b' \mathcal{J}_p \bar{\mathcal{J}}^q & c' \mathcal{J}_p + f'_p \\ \bar{c'} \bar{\mathcal{J}}^q + \bar{f'}^q & d' \end{pmatrix} \quad \text{with} \quad \mathcal{J}_p = \mathcal{I}_p + \langle \partial_p W_0 \rangle \quad , \quad \partial_p W_0 = \frac{\partial W_0}{\partial S^p}$$

The structure is more complex... needs a complete numerical analysis of the mass spectrum

Loop contributions will not be the same... Do such models still need several fields $\{z^i\}$ for $m_h^{(1L)}=125$ GeV?

Deserves further investigations...

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → の Q (2)

What about the tree-level contributions to the Higgs sector?... (Tree-level push-up effects) Do some features of the NMSSM generalise to the S2MSSM?

• • = • • = •

э.

What about the tree-level contributions to the Higgs sector?... (Tree-level push-up effects) **Do some features of the NMSSM generalise to the S2MSSM?** In the NMSSM, assuming $M_Z/v_S < 1$ leads to the upper limit on the Higgs mass

$$M_Z^2\left(\cos^2\beta + \frac{\lambda}{\mathbf{g}}\sin^2\beta\right)$$
 with $\tan\beta = v_U/v_D$ & λ : S/H-coupling in W_{NMSSM}

New contributions in the NMSSM: push-up effects

(4) E > (4) E >

э.

What about the tree-level contributions to the Higgs sector?... (Tree-level push-up effects) **Do some features of the NMSSM generalise to the S2MSSM?** In the NMSSM, assuming $M_Z/v_S < 1$ leads to the upper limit on the Higgs mass

$$M_Z^2 \left(\cos^2\beta + \frac{\lambda}{\mathbf{g}}\sin^2\beta\right)$$
 with $\tan\beta = v_U/v_D \& \lambda$: S/H-coupling in W_{NMSSM}

New contributions in the NMSSM: push-up effects Validation: recover such results in the S2MSSM with the limit $v_{S^2} \ll v_{S^1}$

• • = • • = •

What about the tree-level contributions to the Higgs sector?... (Tree-level push-up effects) **Do some features of the NMSSM generalise to the S2MSSM**?

In the NMSSM, assuming $M_Z/v_S < 1$ leads to the upper limit on the Higgs mass

$$M_Z^2\left(\cos^2\beta + \frac{\lambda}{\mathbf{g}}\sin^2\beta\right)$$
 with $\tan\beta = v_U/v_D \& \lambda$: S/H-coupling in W_{NMSSM}

New contributions in the NMSSM: push-up effects Validation: recover such results in the S2MSSM with the limit $v_{S^2} \ll v_{S^1}$ Starting from the mass matrix of the NMSSM ({ $\Re e(H_D^0), \Re e(H_U^0), \Re e(S)$ }) to identify usefull rules for the S2MSSM:

$$\begin{pmatrix} \varepsilon^2 c_6 & \varepsilon^2 c_7 & \varepsilon c_5 \\ \varepsilon^2 c_7 & c_3 & \varepsilon c_2 \\ \varepsilon c_5 & \varepsilon c_2 & c_1 \end{pmatrix} \quad \text{with} \quad \varepsilon = M_Z / v_S \quad \Rightarrow \text{Only one eigenvalue} \propto \epsilon^2$$

Can be generalised to $n \times n$ matrix (in the lowest orfer of ε):

 $\begin{cases} \mathfrak{v}_p^i &= c_i \ (i = 1, 3, \dots, n) \\ \mathfrak{v}_p^2 &= \varepsilon^2 (c_1 - c_{1,n}^2/c_n) \end{cases}$

What about the tree-level contributions to the Higgs sector?... (Tree-level push-up effects) **Do some features of the NMSSM generalise to the S2MSSM**?

In the NMSSM, assuming $M_Z/v_S < 1$ leads to the upper limit on the Higgs mass

$$M_Z^2\left(\cos^2\beta + \frac{\lambda}{\mathbf{g}}\sin^2\beta\right)$$
 with $\tan\beta = v_U/v_D \& \lambda$: S/H-coupling in W_{NMSSM}

New contributions in the NMSSM: push-up effects

Validation: recover such results in the S2MSSM with the limit $v_{S^2} \ll v_{S^1}$ Starting from the mass matrix of the NMSSM ({ $\Re e(H_D^0), \Re e(H_U^0), \Re e(S)$ }) to identify usefull rules for the S2MSSM:

$$\begin{pmatrix} \varepsilon^2 c_6 & \varepsilon^2 c_7 & \varepsilon c_5 \\ \varepsilon^2 c_7 & c_3 & \varepsilon c_2 \\ \varepsilon c_5 & \varepsilon c_2 & c_1 \end{pmatrix} \quad \text{with} \quad \varepsilon = M_Z / v_S \quad \Rightarrow \text{Only one eigenvalue} \propto \epsilon^2$$

Can be generalised to $n \times n$ matrix (in the lowest order of ε):

 $\begin{cases} \mathfrak{v}_p^i &= c_i \ (i = 1, 3, \dots, n) \\ \mathfrak{v}_p^2 &= \varepsilon^2 (c_1 - c_{1,n}^2 / c_n) \end{cases}$

Can this be applied in the case of the S2MSSM? (need more calculations & verifications)

We need to be carefull with this model:

Need check if all fundamental assumptions are still valid:

IRN Terascale 2023 (R. Ducrocq)

э.

We need to be carefull with this model:

Need check if all fundamental assumptions are still valid:

 $v_{S^i} \ll m_p$ Is such constraint in accordance with $\langle V \rangle = 0$ and $\langle \frac{\partial V}{\partial \phi^i} \rangle = \langle \frac{\partial V}{\partial S^p} \rangle = \langle \frac{\partial V}{\partial z^i} \rangle = 0$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

We need to be carefull with this model:

Need check if all fundamental assumptions are still valid:

 $v_{S^i} \ll m_p$ Is such constraint in accordance with $\langle V \rangle = 0$ and $\langle \frac{\partial V}{\partial \Delta^i} \rangle = \langle \frac{\partial V}{\partial S^p} \rangle = \langle \frac{\partial V}{\partial S^j} \rangle = 0$?

Do all terms contribute to the SUSY Breaking with $v_{S^i} \ll m_p$ ($v_{S^i} \approx 0$)?

Need to analysis which terms do not contribute to $\langle F^i \rangle$ with $v_{S^i} = 0$ How it impacts the SUSY Breaking terms and the phenomenology?

If couplings not contribute to SUSY breaking:

Compensation between scalar & fermionic contributions \rightarrow no quadratic divergences!

◆□ ▶ ◆□ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ◆ ○ ○ ○

Outline

- New solutions in Gravity-Mediated Supersymmetry Breaking
 - Soni-Weldon solutions & New solutions
- 2 S2MSSM: NMSSM-like with two hybrid fields $\{S^1, S^2\}$
 - Presentation of the model

3) Preliminary analysis: impact of V_{HARD} on the Higgs boson mass

- Assumptions & constraints
- Mass matrix and order of magnitude of the S-loop
- Numerical computation of the one-loop contributions on m_h

S2MSSM: Mass matrix and F-term analysis

- $\{S, z\}$ mass matrix in the general case
- From the NMSSM to the S2MSSM
- S2MSSM: Mass matrix and F-term analysis

5 Conclusion & Outlooks

< ロ > < 同 > < 回 > < 回 >

These new solutions bring new models and solutions to investigate

Done:

- ${\scriptstyle \bullet}$ Define a simple non-flat model based on the new solutions: the S2MSSM \checkmark
- ullet Preliminary analysis on the impact of $V_{\it HARD}$ on the Higgs boson mass \checkmark
 - Found configurations leading to $m_h=125~{
 m GeV}$ corresponding to several fields in the hidden sector 🗸
- $\bullet\,$ Mass matrix in the general S2MSSM $\checkmark\,$

To be done:

- F-terms contributions (Study in progress)
- Numerical computation of the tree-level mass spectrum X
- One-loop radiative correction on m_h in the general case X
- Spectrum generator?... 🗡

The analysis is tedious due to:

presence of new (hard and soft) contributions several constraints applied specific strucutre of these new solutions

BACK-UP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

In Soni-Weldon solutions:

$$m_{3/2} = rac{1}{m_{
ho}^2} e^{K/(2m_{
ho}^2)} \langle m_{
ho}^2 W_2(z) + m_{
ho} W_1(z) + W_0(z,\Phi)
angle pprox M^2$$

In the new solutions:

$$m_{3/2} = \frac{1}{m_p^2} e^{K/(2m_p^2)} \Big(\langle m_p W_1(z) + W_0(z, \Phi, S) \rangle + \langle \mathsf{S}^{\mathsf{p}} \rangle \langle \mathsf{m}_p \mathsf{W}_{1,\mathsf{p}}(z) + \mathsf{W}_{0,\mathsf{p}}(z) \rangle \Big) \approx \frac{M^2}{m_p}$$

Since some Soft SUSY Breaking are $\propto m_{3/2}$:

New contributions generate a relation between some Soft SUSY Breaking and Hard SUSY Breaking (perturbations $S^p \rightarrow S^p + \langle S^p \rangle$)

"gravitino-rule"

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Relevant parameters

Firstly: Relevant parameters for $m_h^{(1L)}$:

- $m_{S'}^2$: Mass of the lowest state
- $\sin^2 \theta$: Mixing angle in the basis $\{S, z\}$
- $|\mathcal{I}|^2$: Function present in the superpotential

Several free parameters:

 $\{m_{3/2}, \langle z \rangle, \langle \mathfrak{d}_z^2 w \rangle, \xi_{3/2}, M_4, \langle \partial_z \partial_\phi \omega_0 \rangle, \ldots \rangle\}$ Notations: $W_0 = M_4^3 \omega_0, W = M_4^3 w, M_4 = M_{GUT}$. $\rho = \partial_z \partial_\phi \omega_0 / w$

ヘロト ヘ回ト ヘヨト ヘヨト

Example of possible configurations:

3

Order of magnitude of the S-loop

Conclusion & Outlooks

Order of magnitude of the S-loop

$4\langle z \rangle$: **Non-sense?**

Hard-breaking terms for several fields from the hidden sector:

$$\frac{1}{m_{\rho}^{4}}e^{\sum_{i}|\langle z^{i}\rangle|^{2}} \left(M_{4}^{2}\phi\phi^{\dagger}+S^{\rho}S_{\rho}^{\dagger}\right) \\ \times\left(4\sum_{i}|\xi_{3/2i}|^{2}-2\right)\mathcal{I}_{r}\bar{\mathcal{I}}^{t}S^{r}S_{t}^{\dagger} \\ -\frac{2}{m_{\rho}^{2}}e^{\sum_{i}|\langle z^{i}\rangle|^{2}}\bar{\mathcal{I}}^{q}S_{q}^{\dagger}\mathcal{U}H_{U}\cdot H_{D}$$

Several fields z^i from the hidden sector may lead to $m_h \approx 125~{
m GeV}$

イロト イポト イヨト イヨト

э.

Breaking mechanisms in SUSY not phenomenologically acceptable! \Rightarrow Supergravity & Hidden Sector

Breaking mechanisms in SUSY not phenomenologically acceptable! \Rightarrow Supergravity & Hidden Sector

Breaking mechanisms in SUSY not phenomenologically acceptable! \Rightarrow Supergravity & Hidden Sector

Breaking mechanisms in SUSY not phenomenologically acceptable! \Rightarrow Supergravity & Hidden Sector

э.

イロト イボト イヨト イヨト

Breaking mechanisms in SUSY not phenomenologically acceptable! \Rightarrow Supergravity & Hidden Sector

э.

イロト イヨト イヨト イヨト

Soni & Weldon solutions (Sanjeev K. Soni, H.Arthur Weldon, Physics Letters B, 1983)

Not all forms of $K(\Phi, \Phi^{\dagger})$ and $W(\Phi)$ lead to coherent SUSY Breaking Expansion of the fundamental functions of Supergravity as power of m_p :

$$K = \sum_{n=0}^{r} K_n m_p^n, \ W = \sum_{n=0}^{s} W_n m_p^n$$

Soni & Weldon solutions (Sanjeev K. Soni, H.Arthur Weldon, Physics Letters B, 1983)

イロト 不同 トイヨト イヨト

Soni & Weldon solutions (Sanjeev K. Soni, H.Arthur Weldon, Physics Letters B, 1983)

Conclusion & Outlooks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

New solutions (G. Moultaka, M. Rausch de Traubenberg, D. Tant, Int. J. Mod. Phys. A, 2019)

S: new "hybrid" field sector with properties from both hidden and matter sector

Couplings proportionnal to the hidden sector

Couplings present in V in the limit $m_p \rightarrow \infty$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

New solutions (G. Moultaka, M. Rausch de Traubenberg, D. Tant, Int. J. Mod. Phys. A, 2019)

$$\begin{split} m_{3/2} &= \frac{M^2}{m_p} \\ W(z, \Phi) &= m_p W_1(z, S) + W_0(z, S, \Phi) \text{ with } \begin{cases} W_1(z, \Phi) = W_{1,0}(z) + W_{1,p}(z) \mu_p^* S^p \\ W_0(z, \Phi) = W_{0,p}(z) S^p + W_0(z, U, \Phi) \\ \langle S^p \rangle \ll m_p \end{cases} \text{ and } \mathcal{U} = \mu^p S^q - \mu^q S^p \end{cases}$$

S: new "hybrid" field sector with properties from both hidden and matter sector

Couplings proportionnal to the hidden sector

Couplings present in V in the limit $m_p \to \infty$

Such solutions generates new parametrically supressed Hard breaking terms

Curved case:
 $\delta^{j}_{j^*} \rightarrow (\mathbf{K}^{-1})^{i}_{j^*}$ After SUSY Breaking $V_F = e^{\frac{K}{2m_p^2}} \left(\mathcal{D}_i W \delta^{i}_{j^*} \overline{\mathcal{D}}^{j^*} \overline{W} - \frac{3}{m_p^2} |W|^2 \right)$ $V_F = \partial_i W' \delta^{i}_{j^*} \partial^{j^*} \overline{W'} + V_{\text{SOFT}} + V_{\text{HARD}} + m_p^2 \Lambda$ Example: $\frac{1}{6} F_{ijk}^{I} \phi^{i} \phi^{j} \phi^{k} S_{I}^{\dagger} + \frac{1}{4} E_{ik}^{jl} \phi^{i} \phi^{\dagger}_{j} S^{k} S_{I}^{\dagger}$ (gravitino-rule)

Conclusion & Outlooks

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Scalar potential

$$\begin{split} V &= m_p^2 |m_{3/2}|^2 (\frac{1}{|\xi_{3/2}|^2} - 3) + e^{|\langle z \rangle|^2} \Big(\sum_p |\mathcal{I}_p + M_q^4 \partial_\mu \omega_0 |^2 + M_q^4 \partial_\mu \omega_0 \partial^{\sigma_1} \omega_0 ((\Lambda^{-1})^u_{a_1} \cdot) \Big) \\ &+ M_q^4 \Big((\langle \phi^o \rangle + \phi^o \rangle) (\langle \phi_a^+, + \phi_a^\dagger, \cdot) \Big) \Big(|m_{3/2}|^2 S^{a_1}_{a_1} + \frac{1}{m_p^2} e^{\frac{1}{2} |\langle z \rangle|^2} \Big[\bar{m}_{3/2} S^{\sigma_1} (\mathcal{S}_p)^{a_1}_{a_1} + h.c. \Big] + \frac{1}{m_p^2} e^{\frac{1}{2} |\langle z \rangle|^2} S^{\sigma_2} S^{\sigma_1}_{a_1} + h.c. \Big] \\ &+ \Big((\langle S^p \rangle + S^p \rangle) (\langle S_p^+, S_p^+ \rangle) \Big(|m_{3/2}|^2 T + \frac{1}{m_p^2} e^{\frac{1}{2} |\langle z \rangle|^2} \Big[\bar{m}_{3/2} S^{\sigma_1} T_r + h.c. \Big] + \frac{1}{m_p^2} e^{|\langle z \rangle|^2} S^{\sigma_2} S^{\gamma_1}_{a_1} \Big) \\ &+ \frac{1}{m_p^2} e^{|\langle z \rangle|^2} S^{\sigma_2} \Big(\phi_{a_1} \mathcal{F}_p \delta^{\sigma_2} \mathcal{I}^{\sigma_1} \mathcal{I}_p \mathcal{I}^{\sigma_1} \Big) \\ &+ \frac{1}{m_p^2} e^{\frac{1}{2} |\langle z \rangle|^2} \Big\{ \Big(M_q^2 (\langle \phi_a^+, + \phi_a^+, |\langle \phi_a^+ \rangle + \phi^+ \rangle) (\Lambda^{a^+}_{a_1}) + (\langle S_p^+ \rangle + S_p^+ \rangle) (\langle S^q \rangle + S^q) \Big) (\langle S^q \rangle + S^q) \mathcal{I}_q \times \\ &- \Big(\bar{m}_{3/2} + \frac{1}{m_p^2} e^{\frac{1}{2} |\langle z \rangle|^2} S^{\gamma_1}_{a_1} \mathcal{I} + h.c. \Big\} \\ &+ \frac{1}{m_p^2} e^{\frac{1}{2} |\langle z \rangle|^2} \Big\{ \Big(M_q^2 (\langle \phi_a^+ \rangle + \phi_a^+, |\langle A^{a^+}_{a_1} \rangle + \langle (S^p^+ \rangle + S^p) (\langle S_p^+ \rangle + S^p) \Big) \Big(\sum_r |\mathcal{I}_r|^2 + M_q^3 \mathcal{I}^r \partial_\mu \omega_0 + M_q^3 \mathcal{I}_r \partial^r \omega^0 \Big) \\ &+ e^{\frac{1}{2} |\langle z \rangle|^2} \Big\{ \hat{m}_{3/2} \mathcal{M}_q^2 \mathcal{H}_{a_1}^2 (\phi^{\phi}) + \phi^{\phi_1} \partial_i (\lambda^{a^+}_{a_1}) + \langle (S^p^+ \rangle + S^p) (\langle S_p^+ \rangle + S_p^+ \rangle) \Big((S_p^+ \rangle + S_p^+) \mathcal{I}_q^2 \mathcal{I}_{a_1} (z) \Big) \Big|^2 \mathcal{I}_{a_1} \mathcal{I}_{a_2} \mathcal{I}_{a_1} (z) + M_q^3 \mathcal{I}_{a_2} \mathcal{I}_{a_2} (z) \Big) \\ &+ \left[\frac{m_{3/2}}{m_{3/2}} \mathcal{H}_q^2 \mathcal{H}_{a_1}^2 \mathcal{H}_{a_1} (z) \Big|^2 S^{\frac{1}{2} \mathcal{I}_{a_1}^2 (z) + S^p (\mathcal{I}_q) \Big) \Big|^2 \mathcal{I}_{a_1} \mathcal{I}_{a_2} \mathcal{I}_{a_1} (z) \Big|^2 \mathcal{I}_{a_1} \mathcal{I}_{a_2} \mathcal{I}_{a_2} (z) \Big|^2 \mathcal{I}_{a_2} \mathcal{I}_{a_2} \mathcal{I}_{a_2} \mathcal{I}_{a_2} (z) \Big|^2 \mathcal{I}_{a_2} \mathcal{I}_{a_2} \mathcal{I}_{a_2} \mathcal{I}_{a_2} \mathcal{I}_{a_2} (z) \Big|^2 \mathcal{I}_{a_2} \mathcal{I}_{a_2} \mathcal{I}_{a_2} (z) \Big|^2 \mathcal{I}_{a_2} \mathcal{I}_{a_2} \mathcal{I}_{a_2} \mathcal{I}_{a_2} (z) \Big|^2 \mathcal{I}_{a_2} \mathcal{I}_{a_2} \mathcal{I}_{a_2} \mathcal{I}_{a_2} (z) \Big|^2 \mathcal{I}_{a_2} \mathcal{I$$

where we recall that $m'_{3/2} = m_{3/2}/\xi_{3/2}$ and we have defined

$$S^{a^{*}a} = \frac{1}{|\xi_{3/2}|^{2}} \left((\partial^{a} \Lambda^{a^{*}}_{b} (\Lambda^{-1})^{b}_{b^{*}} \partial_{z} \Lambda^{b^{*}a} - \partial^{z} \partial_{z} \Lambda^{a^{*}a}) \right) + \langle \Lambda^{a^{*}a} \rangle \left(\frac{1}{|\xi_{3/2}|^{2}} - 2 \right)$$

$$= -2\Lambda^{a^{*}}_{a} + \frac{1}{|\xi_{3/2}|^{2}} \tilde{S}^{a^{*}a}$$

$$(S_{p})^{a^{*}a} = \frac{1}{\xi_{3/2}} \left((\partial^{a} \Lambda^{a^{*}}_{b} (\Lambda^{-1})^{b}_{b^{*}} \partial_{z} \Lambda^{b^{*}a} - \partial^{z} \partial_{z} \Lambda^{a^{*}a}) \right) \mathfrak{d}_{z} \mathcal{I}_{p} + \langle \Lambda^{a^{*}}_{a} \rangle \left(\frac{1}{\xi_{3/2}} \mathfrak{d}_{z} \mathcal{I}_{p} - 2 \mathcal{I}_{p} \right) \quad (2)$$

$$(S^{*}_{p})^{a^{*}}_{a} = \left((\partial^{a} \Lambda^{a^{*}}_{b} (\Lambda^{-1})^{b}_{b^{*}} \partial_{z} \Lambda^{b^{*}a} - \partial^{2} \partial_{z} \Lambda^{a^{*}a}) \right) \mathfrak{d}_{z} \mathcal{I}_{p} \mathfrak{d}^{z} \mathcal{I}^{q} + \langle \Lambda^{a^{*}}_{a} \rangle (\mathfrak{d}_{z} \mathcal{I}_{p} \mathfrak{d}^{z} \mathcal{I}^{q} - 2 \mathcal{I}_{p} \tilde{\mathcal{I}}^{q} \right)$$

$$T = \frac{1}{|\xi_{3/2}|^{2}} - 2$$

$$T_{p} = \frac{1}{\xi_{3/2}} \mathfrak{d}_{z} \mathcal{I}_{p} - 2 \mathcal{I}_{p}$$

$$T^{p}_{q} = \mathfrak{d}_{z} \mathcal{J}_{q} \tilde{\mathcal{I}}^{q} \mathcal{I}_{q} - 2 \mathcal{I}_{p}$$

$$R^{b}_{b} = \mathfrak{d}_{p}^{b} - \frac{1}{\xi_{q}} \langle (\Lambda^{-1})^{a}_{b^{*}} \partial_{z} \Lambda^{b^{*}}_{b^{*}} \rangle$$

$$(R^{p})^{a}_{b} = \mathcal{I}^{p} \mathfrak{d}_{p} - \mathfrak{d}^{z} \mathcal{I}^{(\Lambda^{-1})} \mathfrak{d}_{p} \mathcal{J}_{q} \Lambda^{b^{*}}_{b^{*}} \rangle$$