New developments in SModelS

Timothée Pascal

on behalf of the SModelS collaboration: Mohammad AI Takach, Sabine Kraml, Andre Lessa, Sahana Narasimha, T.P., Humberto Reyes-González, Wolfgang Waltenberger

IRN Terascale at LPSC Grenoble, France - April 26, 2023

Inferring results from LHC Searches

- Searching for new physics at the LHC
- Reinterpreting Results with SModelS

2 Database updates

- New analyses
- Impacts on the EWino sector of the MSSM

Inferring results from LHC Searches

- Searching for new physics at the LHC
- Reinterpreting Results with SModelS

New developments in SModelS Inferring results from LHC Searches Searching for new physics at the LHC

Data interpretation in LHC searches

The ATLAS and CMS searches for supersymmetry (SUSY) interpret their data using simplified models (minimal set of parameters).

How would such results constrain a more complex model?

IRN Terascale

arXiv:1105.2838

New developments in SModelS Inferring results from LHC Searches Reinterpreting Results with SModelS

SModelS working principle

arXiv:2112.00769 arXiv:2009.01809 arXiv:1811.10624 arXiv:1312.4175

Public tool to confront BSM signals with a $\mathbb{Z}_2\text{-like}$ symmetry against simplified model results from the LHC.

35 ATLAS and 39 CMS 13 TeV analyses in the database (v.2.2). Code and documentation available online: https://smodels.github.io/

April 26, 2023

IRN Terascale

4/23

New developments in SModelS Inferring results from LHC Searches Reinterpreting Results with SModelS

Two methods to reinterpret results

Test phase-space points and exclude it if

$$\boxed{r = \frac{\sigma^{\rm BSM}}{\sigma^{\rm BSM}_{\rm UL}} \geqslant 1} \text{ using:}$$

Cross-section upper limit maps:

$$\begin{split} \sigma^{\mathsf{BSM}} &= \sum \sigma \prod \mathsf{BR} \leftarrow \mathsf{input file.} \\ \sigma^{\mathsf{BSM}}_{\mathsf{UL}} &= \sigma^{\mathsf{BSM}}_{\mathsf{95\%}} \leftarrow \mathsf{experimental publications.} \end{split}$$

Two methods to reinterpret results

Test phase-space points and exclude it if
$$r = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{BSM}}_{\text{UL}}} \ge 1$$
 with:

Efficiency maps:

$$\begin{split} \sigma^{\mathsf{BSM}} &= \epsilon \times \mathcal{A} \sum \sigma \prod \mathsf{BR} \;\; \mathsf{per \; signal \; region} \leftarrow \mathsf{input \; file \; and \; exp. \; pub.} \\ \sigma^{\mathsf{BSM}}_{\mathsf{UL}} \leftarrow \mathsf{exp. \; pub. \; or \; computed \; through \; an \; hypothesis \; test:} \end{split}$$

$$\sigma_{\rm UL}^{\rm BSM} = \frac{s_{\rm UL}}{\mathcal{L}} = \mu_{\rm UL} \frac{s}{\mathcal{L}} \,, \quad s = n_{\rm signal}.$$

Two methods to reinterpret results

Test phase-space points and exclude it if
$$r = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{BSM}}_{\text{UL}}} \ge 1$$
 with:

Efficiency maps:

$$\begin{split} \sigma^{\text{BSM}} &= \epsilon \times \mathcal{A} \sum \sigma \prod \text{BR} \text{ per signal region} \leftarrow \text{input file and exp. pub.} \\ \sigma^{\text{BSM}}_{\text{UL}} \leftarrow \text{exp. pub. or computed through an hypothesis test:} \end{split}$$

$$\sigma_{\rm UL}^{\rm BSM} = \frac{s_{\rm UL}}{\mathcal{L}} = \mu_{\rm UL} \frac{s}{\mathcal{L}} \,, \quad s = n_{\rm signal}.$$

For 1 signal region:

$$L(\mu, \theta|D) = \frac{(\mu \times s + b + \theta)^{n^{obs}} e^{-(\mu \times s + b + \theta)}}{n^{obs}!} e^{-\frac{\theta^2}{2\delta^2}} .$$

Efficiency maps allow SModelS to compute likelihoods for the hypothesised signal \rightarrow more than a binary information (excluded or not).

Using efficiency maps to reinterpret results

Signal region combination is possible using full statistical models (ATLAS), encoded in a json file and interfaced to SModelS with pyhf. HistFactory likelihood:

$$L(\mu, \theta|D) = \prod_{i=1}^{N} \frac{(\mu s_i + b_i + \theta_i)^{n_i^{obs}} e^{-(\mu s_i + b_i + \theta_i)}}{n_i^{obs}!} \prod_{\theta \in \{\theta\}} c_{\theta}(a_{\theta}|\theta).$$

The correlations can otherwise be encoded in a covariance matrix (CMS). Simplified likelihood:

$$L(\mu, \theta | D) = \prod_{i=1}^{N} \frac{(\mu s_i + b_i + \theta_i)^{n_i^{obs}} e^{-(\mu s_i + b_i + \theta_i)}}{n_i^{obs}!} e^{-\frac{1}{2} \overrightarrow{\theta}^T V^{-1} \overrightarrow{\theta}}$$

New developments in SModelS Database updates

2 Database updates

- New analyses
- Impacts on the EWino sector of the MSSM

Newcomers with database v.2.3

ID	Short Description	$\mathcal{L} \; [\mathbf{fb}^{-1}]$	$\mathbf{UL}_{\mathrm{obs}}$	$\mathbf{UL}_{\mathrm{exp}}$	EM	comb.
CMS-SUS-19-009	$\tilde{t}\tilde{t}$ into 1ℓ + jets + $\not\!\!E_T$	137.0	√	<		
CMS-SUS-19-010	Hadronic search for $\tilde{t}\tilde{t}$	137.0	\checkmark	\checkmark		
CMS-SUS-20-004	$\tilde{H}\tilde{H}$ into $2h + \not\!\!\!E_T$	137.0	✓	✓	(√)	Cov.
CMS-SUS-21-002	Hadronic search for $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$	137.0	\checkmark	\checkmark	()	Cov.
CMS-SUS-21-007	$\tilde{g}\tilde{g}$ into 1ℓ + jets + $\not\!\!E_T$	138.0	\checkmark			
ATLAS-SUSY-2013-12	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ into $3\ell + \not\!\!\!E_T$	20.3	\checkmark		 Image: A second s	
ATLAS-SUSY-2018-05	$\tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{\chi}\tilde{\chi}$ into $2\ell + \text{jets} + \not\!\!\!E_T$	139.0	\checkmark		 Image: A set of the set of the	JSON
ATLAS-SUSY-2018-32	$\tilde{\ell}\tilde{\ell}, \tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp} \text{ into } 2\ell + \not\!\!\!E_T$	139.0	√		\checkmark	JSON
ATLAS-SUSY-2018-41	Hadronic search for $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$	139.0	√	√	(√)	Cov.
ATLAS-SUSY-2018-42	Charged LLPs ($\ell \ell$ into 2ℓ)	139.0	✓	✓		
ATLAS-SUSY-2018-42	Charged LLPs ($\tilde{g}\tilde{g}$ into jets)	139.0	✓	\checkmark	(√)	Cov.
ATLAS-SUSY-2019-02	$\tilde{\ell}\tilde{\ell}, \tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}$ into $2\ell + \not\!\!\!E_T$	139.0	✓		(√)	Cov.

 \checkmark : already in v.2.2 \checkmark : new in v.2.3

Newcomers with database v.2.3

ID	Short Description	$\mathcal{L} \left[\mathbf{f} \mathbf{b}^{-1} \right]$	$\mathbf{UL}_{\mathrm{obs}}$	$\mathbf{UL}_{\mathrm{exp}}$	$\mathbf{E}\mathbf{M}$	comb.
CMS-SUS-19-009	$\tilde{t}\tilde{t}$ into $1\ell + jets + \not\!\!\!E_T$	137.0	√	<		
CMS-SUS-19-010	Hadronic search for $\tilde{t}\tilde{t}$	137.0	✓	\checkmark		
CMS-SUS-20-004	$\tilde{H}\tilde{H}$ into $2h + \not\!\!\!E_T$	137.0	\checkmark	\checkmark	(🗸)	Cov.
CMS-SUS-21-002	Hadronic search for $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$	137.0	\checkmark	\checkmark	(√)	Cov.
CMS-SUS-21-007	$\tilde{g}\tilde{g}$ into $1\ell + \text{jets} + \not\!\!\!E_T$	138.0	✓			
ATLAS-SUSY-2013-12	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ into $3\ell + \not\!\!\!E_T$	20.3	✓		\checkmark	
ATLAS-SUSY-2018-05	$\tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{\chi}\tilde{\chi}$ into $2\ell + \text{jets} + \not\!\!E_T$	139.0	\checkmark		\checkmark	JSON
ATLAS-SUSY-2018-32	$\tilde{\ell}\tilde{\ell}, \tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}$ into $2\ell + \not\!\!\!E_T$	139.0	✓		\checkmark	JSON
ATLAS-SUSY-2018-41	Hadronic search for $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$	139.0	\checkmark	\checkmark	(√)	Cov.
ATLAS-SUSY-2018-42	Charged LLPs ($\tilde{\ell}\tilde{\ell}$ into 2ℓ)	139.0	\checkmark	\checkmark		
ATLAS-SUSY-2018-42	Charged LLPs ($\tilde{g}\tilde{g}$ into jets)	139.0	✓	\checkmark	(🗸)	Cov.
ATLAS-SUSY-2019-02	$\tilde{\ell}\tilde{\ell}, \tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\mp}$ into $2\ell + \not\!\!\!E_T$	139.0	✓		(√)	Cov.

 \checkmark : already in v.2.2 \checkmark : new in v.2.3

best SR

simplified likelihood

HistFactory model

CMS-SUS-21-002

arXiv:2205.09597

13 TeV search for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \text{jets} + \text{MET}$. Implementation of efficiency maps + cov. matrix:

Fiducial $\sigma_{\rm UL}^{\rm BSM}$ from published tables

Fiducial σ_{III}^{BSM} computed with SModelS

April 26, 2023

CMS-SUS-21-002

arXiv:2205.09597

13 TeV search for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \text{jets} + \text{MET}$. Implementation of efficiency maps + cov. matrix:

Combination of 35 signal regions:

CMS-SUS-21-002 (efficiencyMap)

April 26, 2023

ATLAS-SUSY-2018-41

13 TeV search for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \text{jets} + \text{MET}$. Corrected previous implementation for:

	$n(W_{qq})$	$n(Z_{qq})$	$n(V_{qq})$	$n(Z_{bb})$	$n(H_{bb})$
4Q-WW	= 2	-	= 2	= 0	= 0
4Q-WZ	≥ 1	≥ 1	= 2	= 0	= 0
4Q-ZZ	-	= 2	= 2	= 0	= 0
4Q-VV	-	-	= 2	= 0	= 0

	$n(W_{qq})$	$n(\mathbb{Z}_{qq})$	$n(V_{qq})$	$n(\mathbb{Z}_{bb})$	$n(H_{bb})$
2B2Q-WZ	= 1	-	= 1	= 1	= 0
2B2Q-ZZ	-	= 1	= 1	= 1	= 0
2B2Q-Wh	= 1	-	= 1	= 0	= 1
2B2Q-Zh	-	= 1	= 1	= 0	= 1
2B2Q-VZ	-	-	= 1	= 1	= 0
2B2Q-Vh	-	-	= 1	= 0	= 1

ATLAS-SUSY-2018-41 (efficiencyMap)

1 signal region

Combination of 2 signal regions

ATLAS-SUSY-2018-41

13 TeV search for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \text{jets} + \text{MET}$. Reasonably good implementation for:

 $n(W_{qq})$ $n(Z_{qq})$ $n(V_{qq})$ $n(Z_{bb})$ $n(H_{bb})$ 2B2Q-WZ= 1= 1= 1= 02B2O-ZZ= 1= 1= 0= 12B2Q-Wh = 1= 1= 0= 12B2Q-Zh = 1= 1= 0= 12B2Q-VZ= 1= 1= 02B2Q-Vh = 1= 0= 1

ATLAS-SUSY-2018-41 (efficiencyMap)

1 signal region

New developments in SModelS Database updates Impacts on the EWino sector of the MSSM

Impacts on the EWino sector of the MSSM

$$\begin{array}{rll} 10 \,\, {\rm GeV} < & M_1 \approx M_{\tilde B} & < 3 \,\, {\rm TeV}, \\ 100 \,\, {\rm GeV} < & M_2 \approx M_{\tilde W} & < 3 \,\, {\rm TeV}, \\ 100 \,\, {\rm GeV} < & \mu \approx M_{\tilde H} & < 3 \,\, {\rm TeV}, \\ & 5 < & \tan \beta = \frac{v_2}{v_1} & < 50. \end{array}$$

New developments in SModelS Database updates Impacts on the EWino sector of the MSSM

Impacts on the EWino sector of the MSSM

April 26, 2023

New developments in SModelS Database updates Impacts on the EWino sector of the MSSM

Impacts on the MSSM EWino sector

New developments in SModelS Interface to Spey

2) Database updates

What is Spey?

- Spey: Statistical analysis for Phenomenology from Experimental Yields.
- Under development by Jack Araz (IPPP Durham).
- A new statistics tool which can simultaneously use various backends and efficiently combine them within one statistical model.
- For the moment, implemented backends are: pyhf and simplified likelihood framework.

New developments in SModelS Interface to Spey

Why switch to Spey?

- Clearer code/centralize the statistical computations.
- Reinterpretation tools can all interface to the same, well-tested framework.
- Proper way to combine statistical models from different backends.
- Easy way to implement new backends (e.g. linearized systematic uncertainties, see Nicolas Berger's talk right after).

Work in progress

- Substitution of SModelS statistical computations by Spey. ${\bf \ } {\bf \ } L_{BSM}, \, L_{SM}, \, L_{max}, \, \mu_{\rm UL}^{\rm exp}, \, \mu_{\rm UL}^{\rm obs}$
- Consistency checks and revalidation of all experimental results in the database.

Combination of 35 signal regions

Combination of 39 regions (36 SR + 3 CR)

Spey for the combination of analyses

From SModelS v.2.2 on, it is possible to combine uncorrelated analyses.

$$L_{\text{combined}}(\mu) = \prod_{i} L_{i}(\mu, \theta_{i} | D_{i})$$

Will fix some issues when combining analyses with different backends.

SModelS parameters.ini file.

Conclusion

- \rightarrow SModelS v.2.3 (to be realesed soon):
 - 11 new or upgraded analyses (5 CMS and 6 ATLAS) in the database.
 - → CMS: 2 simplified likelihoods
 - → ATLAS: 2 full likelihoods
 - 2 simplified likelihoods
 - 1 best SR likelihood
 - Delegation of statistical computations to Spey.
 - Full set of EWino searches and improved statistics tool.
- \rightarrow Future:
 - SModelS v.3.0: constrain models without a $\mathbb{Z}_2\text{-like}$ symmetry.

Acknowledgments

Many thanks to the IRN Terascale organizers and to the coordinators of the methods and tools session.

This work was funded thanks to the ANR-15-IDEX-02 (APM@LHC), ANR-21-CE31-0023 (PRCI SLDNP) and IN2P3 master project "Théorie – BSMGA".

Backup Slides

ATLAS-SUSY-2018-41

Region	CR0L-4Q	CR0L-2B2Q	SR-4Q-WW	SR-4Q-WZ	SR-4Q-ZZ	SR-4Q-VV
Observed	129	83	2	3	1	3
Post-fit	129 ± 11	83 ± 9	1.9 ± 0.4	3.4 ± 0.7	1.9 ± 0.5	3.9 ± 0.8
W+jets	24.2 ± 2.2	16.6 ± 2.0	0.37 ± 0.08	0.60 ± 0.13	0.26 ± 0.07	0.69 ± 0.15
Z+jets	78 ± 7	44 ± 5	1.0 ± 0.21	1.8 ± 0.4	1.26 ± 0.32	2.1 ± 0.4
VV	21.5 ± 1.9	7.1 ± 0.9	0.35 ± 0.11	0.73 ± 0.24	0.26 ± 0.09	0.79 ± 0.25
VVV	0.9 ± 0.4	0.10 ± 0.05	0.17 ± 0.09	0.19 ± 0.10	0.11 ± 0.07	0.23 ± 0.12
tī	1.38 ± 0.12	7.8 ± 0.9	0.039 ± 0.009	0.060 ± 0.018	0.025 ± 0.010	0.063 ± 0.018
t+X	1.32 ± 0.12	2.87 ± 0.34	0.015 ± 0.006	0.039 ± 0.016	0.012 ± 0.005	0.039 ± 0.016
$t\bar{t}+X$	1.3 ± 0.9	3.7 ± 2.6	-	-	-	-
Other	< 0.1	0.95 ± 0.11	< 0.001	< 0.001	< 0.001	< 0.001
Region	SR-2B2Q-WZ	SR-2B2Q-Wh	SR-2B2Q-ZZ	SR-2B2Q-Zh	SR-2B2Q-VZ	SR-2B2Q-Vh
Region Observed	SR-2B2Q-WZ 2	SR-2B2Q-Wh 0	SR-2B2Q-ZZ 2	SR-2B2Q-Zh 1	SR-2B2Q-VZ 2	SR-2B2Q-Vh 1
Region Observed Post-fit	SR-2B2Q-WZ 2 1.6 ± 0.4	$\frac{\text{SR-2B2Q-Wh}}{0}$ 1.9 ± 0.7	SR-2B2Q-ZZ 2 1.7 ± 0.5	SR-2B2Q-Zh 1 1.6 ± 0.5	SR-2B2Q-VZ 2 2.2 ± 0.6	$\frac{\text{SR-2B2Q-Vh}}{1}$ 2.5 ± 0.8
Region Observed Post-fit W+jets	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ \hline 2 \\ \hline 1.6 \pm 0.4 \\ 0.11 \pm 0.06 \end{array}$	$\frac{\text{SR-2B2Q-Wh}}{0} \\ 1.9 \pm 0.7 \\ 0.24 \pm 0.09 \\ \end{array}$	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ \hline 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \end{array}$	$\frac{\text{SR-2B2Q-Zh}}{1}$ 1.6 ± 0.5 0.26 ± 0.10	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ \hline 2 \\ \hline 2.2 \pm 0.6 \\ \hline 0.26 \pm 0.09 \end{array}$	$\frac{\text{SR-2B2Q-Vh}}{1}$ 2.5 ± 0.8 0.26 ± 0.09
Region Observed Post-fit W+jets Z+jets	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ \hline 2 \\ \hline 1.6 \pm 0.4 \\ \hline 0.11 \pm 0.06 \\ \hline 0.84 \pm 0.27 \end{array}$	$\frac{\text{SR-2B2Q-Wh}}{0} \\ \hline 1.9 \pm 0.7 \\ \hline 0.24 \pm 0.09 \\ \hline 1.3 \pm 0.5 \\ \hline \end{array}$	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ \hline 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \end{array}$	$\frac{\text{SR-2B2Q-Zh}}{1}$ 1.6 ± 0.5 0.26 ± 0.10 0.66 ± 0.24	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ \hline 2 \\ \hline 2.2 \pm 0.6 \\ \hline 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \end{array}$	$\frac{\text{SR-2B2Q-Vh}}{1}$ $\frac{2.5 \pm 0.8}{0.26 \pm 0.09}$ 1.4 ± 0.5
Region Observed Post-fit W+jets Z+jets VV	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ \hline 2 \\ \hline 1.6 \pm 0.4 \\ \hline 0.11 \pm 0.06 \\ \hline 0.84 \pm 0.27 \\ \hline 0.33 \pm 0.11 \end{array}$	$SR-2B2Q-Wh 0 1.9 \pm 0.7 0.24 \pm 0.09 1.3 \pm 0.5 0.09 \pm 0.03 $	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ \hline 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \end{array}$	$\frac{\text{SR-2B2Q-Zh}}{1}$ $\frac{1}{1.6 \pm 0.5}$ 0.26 ± 0.10 0.66 ± 0.24 0.085 ± 0.032	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ \hline 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-Vh} \\ 1 \\ \hline 2.5 \pm 0.8 \\ 0.26 \pm 0.09 \\ 1.4 \pm 0.5 \\ 0.085 \pm 0.030 \end{array}$
Region Observed Post-fit W+jets Z+jets VV VVV	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ 2 \\ \hline 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \\ 0.047 \pm 0.027 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-Wh} \\ 0 \\ \hline \\ 0.24 \pm 0.09 \\ 1.3 \pm 0.5 \\ 0.09 \pm 0.03 \\ < 0.01 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ \hline 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \\ 0.051 \pm 0.032 \end{array}$	$\frac{\text{SR-2B2Q-Zh}}{1}$ $\frac{1}{0.6 \pm 0.5}$ 0.26 ± 0.10 0.66 ± 0.24 0.085 ± 0.032 0.011 ± 0.007	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ \hline 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Region Observed Post-fit W+jets Z+jets VV VVV tī	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ \hline 2 \\ \hline 1.6 \pm 0.4 \\ \hline 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \\ 0.047 \pm 0.027 \\ 0.016 \pm 0.006 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-Wh} \\ 0 \\ \hline 0 \\ 1.9 \pm 0.7 \\ 0.24 \pm 0.09 \\ 1.3 \pm 0.5 \\ 0.09 \pm 0.03 \\ < 0.01 \\ 0.13 \pm 0.04 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ \hline \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \\ 0.051 \pm 0.032 \\ 0.064 \pm 0.019 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-Zh} \\ \hline \\ 1 \\ \hline \\ 0.26 \pm 0.10 \\ 0.66 \pm 0.24 \\ 0.085 \pm 0.032 \\ 0.011 \pm 0.007 \\ 0.40 \pm 0.16 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ \hline 2 \\ 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \\ 0.072 \pm 0.021 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
RegionObservedPost-fit $W+jets$ $Z+jets$ VV VV $t\bar{t}$ $t+X$	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ \hline 2 \\ \hline 1.6 \pm 0.4 \\ \hline 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \\ 0.047 \pm 0.027 \\ 0.016 \pm 0.006 \\ 0.11 \pm 0.05 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-Wh} \\ 0 \\ \hline 1.9 \pm 0.7 \\ 0.24 \pm 0.09 \\ 1.3 \pm 0.5 \\ 0.09 \pm 0.03 \\ < 0.01 \\ 0.13 \pm 0.04 \\ 0.07 \pm 0.04 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ \hline 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \\ 0.051 \pm 0.032 \\ 0.064 \pm 0.019 \\ 0.11 \pm 0.05 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-Zh} \\ \hline \\ 1 \\ \hline \\ 1.6 \pm 0.5 \\ \hline \\ 0.26 \pm 0.10 \\ 0.66 \pm 0.24 \\ 0.085 \pm 0.032 \\ 0.011 \pm 0.007 \\ 0.40 \pm 0.16 \\ 0.041 \pm 0.022 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \\ 0.072 \pm 0.021 \\ 0.11 \pm 0.05 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-Vh} \\ \hline 1 \\ \hline 2.5 \pm 0.8 \\ \hline 0.26 \pm 0.09 \\ 1.4 \pm 0.5 \\ 0.085 \pm 0.030 \\ 0.011 \pm 0.007 \\ 0.46 \pm 0.18 \\ 0.10 \pm 0.05 \end{array}$
$\begin{tabular}{c} \hline Region \\ \hline Observed \\ \hline Post-fit \\ \hline W+jets \\ Z+jets \\ VV \\ VVV \\ t\bar{t} \\ t+X \\ t\bar{t}+X \\ t\bar{t}+X \end{tabular}$	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ \hline 2 \\ \hline 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \\ 0.047 \pm 0.027 \\ 0.016 \pm 0.006 \\ 0.11 \pm 0.05 \\ 0.10 \pm 0.08 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-Wh} \\ \hline 0 \\ \hline 1.9 \pm 0.7 \\ 0.24 \pm 0.09 \\ 1.3 \pm 0.5 \\ 0.09 \pm 0.03 \\ < 0.01 \\ 0.13 \pm 0.04 \\ 0.07 \pm 0.04 \\ 0.07 \pm 0.07 \\ \end{array}$	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ \hline \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \\ 0.051 \pm 0.032 \\ 0.064 \pm 0.019 \\ 0.11 \pm 0.05 \\ 0.14 \pm 0.12 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-Zh} \\ \hline 1 \\ \hline 0.66 \pm 0.5 \\ 0.26 \pm 0.10 \\ 0.66 \pm 0.24 \\ 0.085 \pm 0.032 \\ 0.011 \pm 0.007 \\ 0.40 \pm 0.16 \\ 0.041 \pm 0.022 \\ 0.08^{+0.09}_{-0.08} \end{array}$	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ \hline 2 \\ \hline 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \\ 0.072 \pm 0.021 \\ 0.11 \pm 0.05 \\ 0.18 \pm 0.14 \end{array}$	$\begin{array}{c} \text{SR-2B2Q-Vh} \\ \hline 1 \\ \hline 2.5 \pm 0.8 \\ 0.26 \pm 0.09 \\ 1.4 \pm 0.5 \\ 0.085 \pm 0.030 \\ 0.011 \pm 0.007 \\ 0.46 \pm 0.18 \\ 0.10 \pm 0.05 \\ 0.10^{+0.11}_{-0.10} \end{array}$

$$L_{\text{combined}}(\mu) = \prod_{i} L_{i}(\mu, \theta_{i}|D_{i})$$

Under-fluctuation in the background leads to negative $\hat{\mu}$.

$$L_{\text{combined}}(\mu) = \prod_{i} L_{i}(\mu, \theta_{i} | D_{i})$$

Excess in the data leads to positive $\hat{\mu}$.

Database v.2.2.0:

Run 2 - 13 TeV

In total, we have results from 35 ATLAS and 39 CMS 13 TeV searches.

- · ATLAS upper limits: 32 analyses, 80 (of which 4 LLP) results
- ATLAS efficiency maps: 21 analyses, 65 (of which 11 LLP) results, 599 individual maps
- · CMS upper limits: 36 analyses, 143 (of which 3 LLP) results
- CMS efficiency maps: 8 analyses, 53 results, 3186 individual maps

Run 1 - 8 TeV

In total, we have results from 15 ATLAS and 18 CMS 8 TeV searches.

- ATLAS upper limits: 13 analyses, 34 results
- ATLAS efficiency maps: 10 analyses, 31 results, 269 individual maps
- · CMS upper limits: 16 analyses, 56 (of which 3 LLP) results
- · CMS efficiency maps: 9 analyses, 47 (of which 9 LLP) results, 980 individual maps

ATLAS-SUSY-2013-12

8 TeV search for $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \rightarrow 3$ leptons + MET. Implementation of efficiency maps:

TChiChipmSlepL: $pp \rightarrow \tilde{\chi}_{1}^{2}\tilde{\chi}_{1}^{2}, \tilde{\chi}_{2}^{2}\tilde{\chi}_{1}^{2} \rightarrow \tilde{h}(v\tilde{v})/\tilde{v}(v\tilde{l}), \tilde{l} \rightarrow h\tilde{g}_{2}^{2}, \tilde{m}_{2}, v\tilde{g}_{2}^{2}x, m_{\tilde{v}}, m_{\tilde{l}} = 0.5 * x + 0.5 * y, m_{\tilde{v}} = y$

arXiv:1402.7029

ATLAS-SUSY-2013-12

arXiv:1402.7029

ATLAS-SUSY-2019-02

arXiv:2209.13935

