

The NFlikelihood: Unsupervised Machine Learning LHC likelihoods with Normalizing Flows.

Humberto Reyes-González University of Genoa

In collab. with Riccardo Torre

IRN Terascale, Grenoble. 26/04/2023

Introduction

- Likelihood functions (full statistical models) parametrise the full information of an LHC analysis; wether it is New Physics (NP) search or an SM measurement.
- Their preservation is a key part of the LHC legacy.

Usage:

- Resampling
- Reinterpretation with different statistical approaches.
- Reinterpretation in the context of different NP models.
- •

Important steps forward:

- ATLAS started publishing full likelihoods of NP searches ATL-PHYS-PUB-2019-029.
- Release of the pyhf package to construct statistical models 10.21105/joss.02823, L Heinrich, M Feickert, G Stark
- Theorists have started profiting from this arXiv:2012.08192, arXiv:2206.14870 SModelS/MadAnalys collab.
- Supervised learning with DNN likelihood arxiv:1911.03305 A Coccaro, M. Perini, L Silvestrini, R Torre

Our approach:

Challenges:

- LHC likelihoods are often high-dimensional complex distributions.
- We want precise descriptions that can be efficiently reinterpreted.

Unsupervised Learning with Normalizing Flows

Choosing the transformations

THE OBJECTIVE:

To perform the right transformations to accurately estimate the complex underlying distribution of some observed data.

THE RULES OF THE GAME:

- The transformations must be invertible
- They should be sufficiently expressive
- And computationally efficient (including Jacobian)

THE STRATEGY

Let *Neural Networks* learn the parameters of Autoregressive Normalizing Flows.

Autoregressive Flows

- Dimension x^i is transformed with bijectors trained with $y_{1:i-1}$
- Bijector parameters are trained with Autoregressive NNs.
- The Jacobian J is triangular.
- Jacobian is easily computed!
- Direct sampling OR density estimation.
- Expressive transformations.

The loss function: $-\log(p_{AF}(real_{dist}))$

Autoregressive Flows

MAF

Masked Autoregressive Flow

arXiv:1705.07057

 $y(x;\mu,b) = \mu \cdot x + b$

Normalizing Flows in High Dimensions

NFs scale very well to High Dimensions:

arXiv:2202.09188,arXiv:2302.12024 (Coccaro, Letizia, Torre, HRG)

Great potential in HEP, Astro, Lattice

- Numerical integration (arXiv:2001.05486, arXiv:2001.05478)
- Unfolding (arXiv:2006.06685)
- Calorimeter shower simulation (arXiv:2106.05285,arXiv:2211.15380)
- Event generation (arXiv:2001.10028, arXiv:2110.13632)
- Anomaly detection (arXiv:2001.04990)
- Astro / Cosmo (arXiv:2104.12789,arXiv:2105.0332)
- Lattice (arXiv:2101.08176, arXiv:2210.03139)

Non-exhaustive list...

better type 'Normalizing Flows' on InspireHEP and see for yourself!

Evaluation metrics.

- Two-sample 1D Kolgomonov - Smirnov test (ks test):

$$D_{n,m} = \sup_{x} |F_n(x) - F_m(x)|$$

-Computes the p-value for two sets of 1D samples coming from the same *unknown* distribution. ⁹⁴ -We average over ks test estimations and compute the median over dimensions. -**Optimal value 0.5**

-HDPIe:

Highest Posterior Density Interval (HDPI) on a posterior density for fixed probability. We computed the **HPDI relative error width (HPDIe)** at the σ , 2σ and 3σ intervals between each 1D marginal of the true and predicted distributions. At each dimension, we computed the median of relative errors between each corresponding interval. The result is summarized as the median over all dimensions.

The NFLikelihood. (HRG, R. Torre, arXiv:2305.xxxx))

LHC likelihoods in a nutshell

Bayes theorem:

$$P(\Theta, x) = P_x(x \mid \Theta)\pi$$

LHC Statistical model:

$$P(\mu, \theta, \theta, \theta) = \prod_{k=1}^{n_c} P[n_i; \mu \varepsilon_{i,k}(\theta)]$$

Nuisance parameters (uncertainties)

Parameters of Interest (signal strength, etc.)

Test Statistic:

$$t(\mu) = -2\log\frac{L(\mu;\hat{\theta}(\mu))}{L(\hat{\mu},\hat{\theta}(\hat{\mu}))}$$

[¬] (Observed) data

 $\tau_{\Theta}(\Theta) = P_{\Theta}(\Theta \mid x) \pi_{x}(x)$

 $)N_{S,i,k}(\vec{\theta}) + B_{i,k}(\vec{\theta})]\Pi_{i=1}^{n_{syst}}G(\theta_{i}^{obs};\theta_{i};1)$

Best- fits:

 $I(\hat{u} \cdot \hat{A})$ $\mathbf{L}(\mathbf{p},\mathbf{v})$

Where μ are observables

best-fit $\theta(\mu)$

Even $P(\Theta | x = obs)$ can be challenging...

CHALLENGES:

- High-dimensionality
- Truncated distributions
- Multimodal dimensions
- "Noisy" dimensions
- Correlations
- Wide/different ranges

Example Likelihoods

$P(\Theta | x = \text{obs})$

LHC-like new physics search Likelihood.

- •1 parameter of interest (signal strength)
- •94 nuisance parameters.
- Ref. <u>arXiv:1809.05548</u>

ElectroWeak fit Likelihood

- EW observables.
- Including recent measurements of top mass (CMS) and W mass (CDF).
- •8 parameters of interest (Wilson coefficients of SMEFT operators)
- •32 nuisance parameters.
- Ref. <u>arXiv:2204.04204</u>

Flavor fit likelihood.

- Flavor observables related to $b \rightarrow sl^+l^-$ transitions
- •12 parameters of interest (Wilson coefficients of SMEFT operators)
- •77 nuisance parameters.
- Ref. <u>arXiv:1903.09632</u>

LHC-like new physics search Likelihood.

Test sample : 300k

# of sam	f hidd ples lay	len # of ers bijec.	algorithm s	pline range knots	L1 factor	patience	max # of epochs
$2\cdot1$	0^5 3 ×	64 MAF	2		0	20	200
esults	for Toy-I	Likelihood					
of	Median VS tost	Median W. distance	Frobenius	$\mathrm{HPDIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	HPDIe	$_{3\sigma}$ tir
mples	KS-test	w-distance					

Results for Toy-Likelihood POI							
POI	KS-test	$\mathrm{HPDIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$			
μ	0.5127	0.02184	0.009431	0.01584			

ElectroWeak fit Likelihood

Test sample : 100k

Hyperparameters for the EW-Likelihood								
# of samples	hidden layers	# of bijec.	algorithm	${ m spline} { m knots}$	range	L1 factor	patience	# epoc
$2\cdot 10^5$	2	3×128	A-RQS	4	-6	0	20	8
Results for the EW-Likelihood								
[∉] of amples	Median KS-test	Median W-distance	Frobenius norm	HPI	$\mathrm{DIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$	tin
$\cdot 10^5$.489	$5.59 \cdot 10^{-5}$	1.154	8.57 ·	10^{-4}	$8.88 \cdot 10^{-4}$	$2.93 \cdot 10^{-3}$	
	Hyper # of samples 2 · 10 ⁵ cesults for amples • 10 ⁵	Hyperparameter $\#$ ofhiddensampleslayers $2 \cdot 10^5$ 2 $2 \cdot 10^5$ 2Cesults for the EV \neq ofMedianamplesKS-test $\cdot 10^5$.489	Hyperparameters for the $\#$ ofhidden $\#$ ofsampleslayersbijec. $2 \cdot 10^5$ 2 3×128 Results for the EW-Likeliho \notin ofMedian $\#$ ofMedian<	Hyperparameters for the EW-Likelih $\#$ ofhidden $\#$ ofalgorithmsampleslayersbijec. $2 \cdot 10^5$ 2 3×128 A-RQS Results for the EW-Likelihood \notin ofMedianMedian $\#$ ofMedianMedian <th>Hyperparameters for the EW-Likelihood$\#$ ofhidden$\#$ ofalgorithmsplinesampleslayersbijec.knots$2 \cdot 10^5$2$3 \times 128$A-RQS4Results for the EW-Likelihood\notin ofMedianMedianFrobeniusHPIamplesKS-testW-distancenorm$\div 10^5$.489$5.59 \cdot 10^{-5}$1.154$8.57 \cdot 1.154$</th> <th>Hyperparameters for the EW-Likelihood$\#$ ofhidden$\#$ ofalgorithmsplinerangesampleslayersbijec.knots$2 \cdot 10^5$2$3 \times 128$A-RQS4-6Results for the EW-Likelihood\notin ofMedianMedianFrobeniusHPDIe_{1σ}amplesKS-testW-distancenormHPDIe_{1σ}$4 \cdot 10^5$.489$5.59 \cdot 10^{-5}$1.154$8.57 \cdot 10^{-4}$</th> <th>Hyperparameters for the EW-Likelihood# ofhidden# ofalgorithmsplinerangeL1 factorsampleslayersbijec.knots11$2 \cdot 10^5$2$3 \times 128$A-RQS4-60Results for the EW-Likelihoode ofMedianMedianFrobeniusHPDIe_{1σ}HPDIe_{2σ}amplesKS-testW-distancenorm$4 \cdot 10^5$.489$5.59 \cdot 10^{-5}$1.154$8.57 \cdot 10^{-4}$$8.88 \cdot 10^{-4}$</th> <th>Hyperparameters for the EW-Likelihood# ofhidden# ofalgorithmsplinerangeL1 factorpatiencesampleslayersbijec.knots2020$2 \cdot 10^5$2$3 \times 128$A-RQS4-6020Results for the EW-Likelihoode ofMedianMedianFrobeniusHPDIe₁σHPDIe₂σHPDIe₃σamplesKS-testW-distancenormHPDIe₁σ8.88 \cdot 10^{-4}2.93 \cdot 10^{-3}</th>	Hyperparameters for the EW-Likelihood $\#$ ofhidden $\#$ ofalgorithmsplinesampleslayersbijec.knots $2 \cdot 10^5$ 2 3×128 A-RQS4Results for the EW-Likelihood \notin ofMedianMedianFrobeniusHPIamplesKS-testW-distancenorm $\div 10^5$.489 $5.59 \cdot 10^{-5}$ 1.154 $8.57 \cdot 1.154$	Hyperparameters for the EW-Likelihood $\#$ ofhidden $\#$ ofalgorithmsplinerangesampleslayersbijec.knots $2 \cdot 10^5$ 2 3×128 A-RQS4-6Results for the EW-Likelihood \notin ofMedianMedianFrobeniusHPDIe _{1σ} amplesKS-testW-distancenormHPDIe _{1σ} $4 \cdot 10^5$.489 $5.59 \cdot 10^{-5}$ 1.154 $8.57 \cdot 10^{-4}$	Hyperparameters for the EW-Likelihood# ofhidden# ofalgorithmsplinerangeL1 factorsampleslayersbijec.knots11 $2 \cdot 10^5$ 2 3×128 A-RQS4-60Results for the EW-Likelihoode ofMedianMedianFrobeniusHPDIe _{1σ} HPDIe _{2σ} amplesKS-testW-distancenorm $4 \cdot 10^5$.489 $5.59 \cdot 10^{-5}$ 1.154 $8.57 \cdot 10^{-4}$ $8.88 \cdot 10^{-4}$	Hyperparameters for the EW-Likelihood# ofhidden# ofalgorithmsplinerangeL1 factorpatiencesampleslayersbijec.knots2020 $2 \cdot 10^5$ 2 3×128 A-RQS4-6020Results for the EW-Likelihoode ofMedianMedianFrobeniusHPDIe ₁ σ HPDIe ₂ σ HPDIe ₃ σ amplesKS-testW-distancenormHPDIe ₁ σ 8.88 \cdot 10^{-4}2.93 \cdot 10^{-3}

Results for EW-Likelihood							
POI	KS-test	$\mathrm{HPDIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$			
$c_{arphi l}^1$	0.4662	0.06708	0.06345	0.07149			
$c_{arphi l}^3$	0.3741	0.02977	0.0945	0.7034			
$c_{\varphi q}^1$	0.4251	0.04999	0.03841	0.04914			
$c_{\varphi q}^3$	0.2404	0.05101	0.1361	0.01995			
$c_{arphi d}$	0.495	0.02929	0.01275	0.05298			
$c_{arphi e}$	0.2719	0.06732	0.7391	0.1454			
$c_{arphi u}$	0.2643	0.1912	0.01737	0.1953			
c_{ll}	0.4288	0.1558	0.0752	0.06005			

Flavor fit Likelihood

Test sample : 500k

Hyperp	arameters	s for the I	Flavor-Like	elihood				
# of samples	hidden layers	# of bijec.	algorithm	spline knots	range	L1 factor	patience	ma:
10^6	3×1024	2	A-RQS	8	-5	$1e^{-4}$	50	
Results	for the F	lavor-Likel	ihood					
# of samples	Median KS-test	Median W-distanc	Frobeniu e norm	ıs HP n	$DIe_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$	tiı

 $0.2801 \quad 8.67 \cdot 10^{-3}$

Results for Flavor-Likelihood POIs								
POI	KS-test	$\mathrm{HPDIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$				
c_{1123}^{LQ1}	0.4346	0.007251	1.83e-05	4.731e-08				
c^{LQ1}_{2223}	0.4736	0.01249	0.00162	0.03575				
c_{1123}^{Ld}	0.486	0.01466	0.006628	0.002338				
c_{2223}^{Ld}	0.4138	0.0513	0.02446	2.398e-08				
c_{11}^{LedQ}	0.5362	0.00738	0.004683	5.387e-08				
c_{22}^{LedQ}	0.5161	0.02799	0.001639	2.155e-09				
c^{Qe}_{2311}	0.4476	0.01389	0.007458	1.419e-07				
c^{Qe}_{2322}	0.382	0.02132	0.02496	0.0004609				
c_{1123}^{ed}	0.4789	0.04076	0.00333	5.602e-08				
c^{ed}_{2223}	0.4436	0.008685	0.016	1.502e-08				
$c_{11}^{\prime LedQ}$	0.3203	0.09194	0.007041	8.011e-08				
$c_{22}^{\prime LedQ}$	0.4157	0.03001	0.008749	4.374e-08				

 $7.346 \cdot 10^{-3} \quad 1.42 \cdot 10^{-7}$

 10^{6}

 $0.455 \quad 2.71 \cdot 10^{-3}$

Flavor fit Likelihood

Conclusions

- Normalizing Flows show great capacity of learning complex high dimensional functions. Specially, the A-RQS.
- NFs can accurately and efficiently model LHC likelihoods.

Outlook

- Paper in preparation (2305.xxxx).
- Check out N4HEP project: https://github.com/NF4HEP
- Deeper look into evaluation metrics, e.g. classifier likelihood ratio-test.
- Study NFs for data augmentation, uncertainties of NFs, framework agnostic NF models.
- Extended and systematic usage of NFlikelihoods.
- Learning full statistical models with Conditional NFs.

THANK YOU!