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GENERALIZATION
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Generalization [edit]
The difference between optimization and machine learning arises from the goal of generalization: while optimization algorithms can minimize the loss on a
training set, machine learning is concerned with minimizing the loss on unseen samples. Characterizing the generalization of various learning algorithms is

an active topic of current research, especially for deep learning algorithms.

e CAN WE TEST IT? = VALIDATION
e CAN WE UNDERSTAND IT? = EXPLANATION (XIML)



PDF/NNPDF RECAP SEQUENCE
THE FUNCTIONAL MONTE CARLO

REPLICA SAMPLE OF FUNCTIONS <= PROBABILITY DENSITY IN FUNCTION SPACE
KNOWLEDGE OF LIKELIHHOD SHAPE (FUNCTIONAL FORM) NOT NECESSARY
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FINAL PDF SET: f\“)(x, p):;

i =up, antiup, down, antidown, strange, antistrange, charm, gluon; 5 =1,2,... Ny¢p
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MINIMIZATION AND CROSS-VALIDATION

NEURAL NET PARAMETERS DETERMINED BY X2 MINIMIZATION THROUGH GRADIENT DESCENT

RANDOM TRAINING-VALIDATION SPLIT, X2 TO TRAINING DATA REPLICAS MINIMIZED

TRAINING STOPS IF VALIDATION x? GROWS FOR A WHILE (PATIENCE)

LOWEST VALIDATION X2 = OPTIMAL FIT
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FITTING THE METHODOLOGY

HYPEROPTIMIZATION
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SRS
1Adam RMSprop Adadelta 103 1072 10! glorot_uniform glorot_normal 10000 20000 30000 40000 0.1 0.2 0.3 0.4 1.00 1.05 1.10 1 2 3 sigmoid tanh
optimizer learning rate initializer epochs stopping patience positivity multiplier number of layers activation function
HYPEROPT PARAMETERS
NEURAL NETWORK FIT OPTIONS
NUMBER OF LAYERS (¥) OPTIMIZER (¥)
SIZE OF EACH LAYER INITIAL LEARNING RATE (¥)
DROPOUT MAXIMUM NUMBER OF EPOCHS (*)
ACTIVATION FUNCTIONS (*) STOPPING PATIENCE (*)
INITIALIZATION FUNCTIONS (*) POSITIVITY MULTIPLIER (*)

e SCAN PARAMETER SPACE
e OPTIMIZE FIGURE OF MERIT: K-FOLDING LOSS




K-FOLDING

LGenem‘ce new hyperparameter configuration

|
‘ Fit to subset of folds

I
hyperopt l T ) l

folds 1,2,3 folds 1,2,4 folds 1,3,4 ’ folds 2,3,4
| | | |
X X3 X3 xi

e EACH FOLD REPRODUCES
FEATURES OF FULL DATASET

e LOSS: AVERAGE X2 OF NON-FITTED FOLDS

e OVERFITTING REMOVED =
CORRECT GENERALIZATION
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CMS Drell-Yan 2D 7 TeV 2011

CMS 3D dijets 8 TeV
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Fold 2

HERA I+Il inc CC e™p
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CMS W asymmetry 840 pb
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Fold 3
HERA I+11 inc CC ¢*p HERA T+ inc NC etp 575 GeV NMC d/p
NuTeV ¥ LHCb W, Z — i 7 TeV LHCb Z — e
ATLAS W, Z 7 TeV 2011 Central ATLAS W et 8 TeV ATLAS HM DY 7 TeV
selection
CMS W asymmetry 4.7 fb DYE 866 o}y, /oby CDF Z rapidity (new)
ATLAS o" ATLAS single top y (normalised) CMS off" 5 TeV

CMS ¢ double diff. (mg, yr)
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CMS dijets 7 TeV’
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ATLAS single top Re 13 TeV

CMS single top R 13 TeV
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CAN WE TRUST IT?
VALIDATION: OVERFITTING METRIC

RECOMPUTE VALIDATION X2
— SAME TRAINING-VALIDATION SPLIT
— DIFFERENT FLUCTUATED VALIDATION DATA

COMPUTE AVERAGE X? & DETERMINE DIFFERENCE TO VALIDATION Ro = (x2,; — x2. /)
OVERFITNESS

NEGATIVE OVERFITNESS 'R = OVERFIT

CHARM PDF
OVERFIT (NO CLIPNORM) PROPER FIT (NNPDF4.0)
c at 1.65 GeV ¢ at 1.65 GeV
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CAN WE TRUST IT?

VALIDATION: CLOSURE TESTS
FAITHFUL UNCERTAINTIES IN DATA REGION?

ASSUME “TRUE” UNDERLYING PDF = E.G. SOME RANDOM PDF REPLICA

GENERATE DATA DISTRIBUTED ACCORDING TO EXPERIMENTAL COVARIANCE MATRIX

RUN WHOLE METHDOLOGY ON THESE DATA

DO STATISTICS ON “RUNS OF THE UNIVERSE”, POSSIBLE THANKS TO EFFICIENT METHDOLOGY:

COMPARE TO TRUE VALUES OF OBSERVABLES (NOT FITTED)
— BIAS/VARIANCE: MEAN SQUARE DEVIATION WR TO TRUTH VS UNCERTAINTY

— IS TRUTH WITHIN ONE SIGMA 68% OF TIMES?

0.00

RESULTS
deviation from truth
— tomatasubuon \/bias/variance giata)
R

DY 0.99+0.08 0.69 = 0.02

Top-pair 0.75+£0.06 0.75£0.03

Jets 1.14 £0.05 0.63 £0.03

Dijets 0.99 £ 0.07 0.70£0.03

Direct photon 0.71 £0.06 0.8140.03

‘ | | ‘ ‘ Single top 0.87x£0.07 0.69 £ 0.04
- - ° : ) Total 1.03£0.05 0.68£0.02

Difference to underlying prediction




CAN WE TRUST IT?
EXPLANATION: HOW DO RESULTS LOOK LIKE?

e PLOT RESULTS IN (0, 0z) PREDICTION SPACE
e DISTRIBUTION OF REPLICAS = OPTIMAL IMPORTANCE SAMPLING
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« NNPDF4.0

DISTRIBUTION OF REPLICAS DRIVEN BY
e DATA UNCERTAINTIES = DATA REPLICA FLUCTUATION

e INTERPOLATION, EXTRAPOLATION AND FUNCTIONAL UNCERTAINTIES
— BEST FIT DEGENERACY



EXPLANATION
THE REPLICA DISTRIBUTION

e REPLICA FLUCTUATION = DATA UNCERTAINTIES

e NO REPLICA FLUCTUATION = FIT DEGENERACY
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« fits to central data



EXPLANATION

THE REPLICA DISTRIBUTION

ARE ALL FITS EQUALLY GOOD?
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e COMPARE TRAINING AND VALIDATION X2 FOR EACH REPLICA

e NO CORRELATION BETWEEN FIT QUALITY AND POSITION IN THE (O‘ H,O Z) PLANE

e UNIFORM FIT QUALITY



THE REPLICA DISTRIBUTION
COMPARISON TO CENTRAL DATA

e EACH PDF REPLICA FITTED TO A DATA REPLICA

e FIT QUALITY TO CENTRAL DATA STATISTICALLY DISTRIBUTED

Distribution of x2“*

175 1

150 1

125 1

N replicas

75 1

50

251
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e AVERAGE BEST FIT PDF = LOW x?

e NOT NECESSARILY LOWEST

x2*? NNPDF40, 3000 replicas

—— x2““ NNPDF40
[ NNPDF40, 3000 replicas
o NNPDF40

5850 5900 5950 6000



THE REPLICA DISTRIBUTION
COMPARISON TO CENTRAL DATA

e ARE FITS WITH HIGH X2 TO CENTRAL DATA POOR (UNDERLEARNT)?

my 1.29

,,. NNPDF40_nnlo_as_01180_1000

-1.28
2.6 1

2.5 [ 1.27

2.4
L L 126
2.3 3

%2 NG validation

2.2 . - 1.25

2.1
1.24

2.0 + T '
2.0 22 2.4 2.6

¥ My training = 123

e NO CORRELATION BETWEEN X2 TO CENTRAL DATA AND TRAINING, VALIDATION X2
e UNIFORM FIT QUALITY

e DISPERSION DUE
— DATA REPLICA FLUCTUATION — DATA UNCERTAINTIES

— BEST FIT DEGENERACY
— INTERPOLATION, EXTRAPOLATION AND FUNCTIONAL UNCERTAINTIES

BOTH?



THE REPLICA DISTRIBUTION

COMPARISON TO CENTRAL DATA
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x? TO CENTRAL DATA

e CORRELATED TO POSITION IN (0f,0,) PLANE

e CORRELATED TO A FEATURE?
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EXPLANATION
LOOKING FOR FEATURES
REPLICAS WITH LOWEST & X* TO CENTRAL DATA

THE GLUON
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e REPLICAS CLOSER TO CENTRAL DATA — MORE STRUCTURE

e CORRELATED TO A FEATURE?



EXPLANATION
THE PDF KINETIC ENERGY
REPLICAS WITH LOWEST & X? TO CENTRAL DATA

d 2
2
KE = \/1 + (dlnxmf(a:,Q ))

ARCLENGTH OF THE NN OUTPUT IN TERMS OF INPUT
THE GLUON
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e REPLICAS CLOSER TO CENTRAL DATA = MORE STRUCTURE
e HIGHER KINETIC ENERGY



EXPLANATION
OVERLEARNING?

¢ FORCE OVERLEARING
THE OVERFIT METRIC

DEFAULT NNPDF4.0 OVERFIT VARIANT
NNPDF4.0 Overfitted: double training length
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e LOOK AT THE OUTPUT = MORE STRUCTURE IN GLUON



EXPLANATION

A PARADOX?
e BEST FIT TO CENTRAL DATA CORRELATED TO HIGH ARCLENGTH

e HIGH ARCLENGTH CORRELATED TO OVERLEARNING

e TRAINING /VALIDATION BALANCE UNCORRELATED TO QUALITY OF FIT TO CENTRAL
DATA



EXPLANATION

GENERALIZATION!

e OVERFITTING CAN MEAN POOR GENERALIZATION
e KEPT IN CHECK BY K-FOLDING (NOT CROSS-VALIDATION)

e LOOK AT BEST X” TO FITTED VS. EXCLUDED FOLDS
THE GLUON

FITTED FOLDS EXCLUDED FOLD
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e BEST VS WORST REVERSED

e HIGH K.E. SOLUTIONS DO NOT GENERALIZE



SO, CAN WE TRUST IT?
ASK CHATGPT!

can one trust machine learning for the determination of parton distributions?

Machine learning can be a useful tool for the determination of parton distributions, but

whether one can trust the results obtained using this approach depends on various factors.

Parton distribution functions (PDFs) describe the probability distribution of partons, such as
quarks and gluons, within a hadron, such as a proton. Determining PDFs from experimental
data is a complex and challenging task, and machine learning algorithms can be used to
assist in this process. In recent years, several studies have demonstrated the potential of
machine learning techniques for PDF determination, and some have shown promising

results.

However, it's important to keep in mind that machine learning algorithms are not perfect,
and their results should always be interpreted with caution. One potential concern is
overfitting, which occurs when a model is trained too well on a particular dataset and ends
up being unable to generalize to new data. This can lead to biased or unreliable results.
Another concern is the need for a large and diverse dataset to train the machine learning
model, as the accuracy of the model depends on the quality and quantity of the training
data.

Therefore, while machine learning can be a valuable tool for PDF determination, it's crucial to
validate the results obtained using this approach against other methods and to carefully

assess the reliability and accuracy of the machine learning models used.



