The mhMSSM and SuSpect3

Dirk Zerwas IJCLab and DMLab April 26, 2023 IRN Terascale

- Introduction
- mHMSSM Rima El-Kosseifi, Jean-Loic Kneur, Gilbert Moultaka, Dirk Zerwas
- SUSPECT3 Jean-Loic Kneur, Gilbert Moultaka, Michael Ughetto, Dirk Zerwas, Abdelhak Djouadi
- Conclusions and Outlook

Introduction

A brief history:

- 1997 GDR Supersymmetry (Pierre Binetruy)
 - Working group MSSM
- 1997-2002 Definition of phenomenological MSSM (pMSSM)
 - sfermions: 1st and 2nd generation universality
 - No new sources of FCNC and CP violation
- 1999 Publication MSSM report: <u>arXiv:hep-ph/9901246</u> (406 citations)
- 2002 Publication of Spectrum Calculator SuSpect: <u>Comput.Phys.Commun.176:426-455,2007</u>
 - Abdelhak Djouadi, Jean-Loic Kneur, Gilbert Moultaka
 - pMSSM (of the MSSM WG +3 parameters), mSUGRA, mGMSB,....
- 2003 Susy Les Houches Accord (SLHA): <u>JHEP 0407:036,2004</u>
 - Interoperability of Spectrum, Decay and Cross section calculators
- 2012 Discovery a R=+1 particle: h
- 2013 Relic density MSSM with SuSpect2: Phys. Rev. D 89, 055017 (2014)
- 2013 Start on major rewrite in C++ (SuSpect3)
- 2015 Relic density NMSSM with SFitter: Phys. Rev. D 93, 015011 (2016)

Introduction

- fermion ↔boson
- has "no" problems with radiative corrections (quadrat. div.)
- has a light Higgs Boson (<140GeV)
- interesting pheno at the TeV scale

spin-0	spin-1/2	spin-1
Squarks	q	
$\mathbf{\tilde{q}}_{\mathbf{R}},\mathbf{\tilde{q}}_{\mathbf{L}}$		
	Gluino: g	g
Sleptons:	ł	
$\tilde{\ell}_{R}, \tilde{\ell}_{L}$		
h,H,A	Neutralino	Ζ, γ
	Xi=1-4	
\mathbf{H}^{\pm}	Charginos:	W±
	$\chi^{\pm}_{i=1-2}$	

3 neutral Higgs bosons: h, A, H 1 charged Higgs boson: H[±] and supersymmetric particles

Many different models:

- (p)MSSM (minimal supersymmetric extension of the standard model)
- mSUGRA
- GMSB
- AMB
- NMSSM

MSSM LowScale Higgs sector trilinear couplings Gauge sector $\tan\beta(Q = M_{Z^{\circ}})$ $M_1(Q = M_{\text{EWSB}})$ $A_t(Q = M_{\text{EWSB}})$ $m_{H_{\rm e}}^2(Q = M_{\rm EWSB})$ $M_2(Q = M_{\rm EWSB})$ $A_{\rm b}(Q = M_{\rm EWSB})$ $m_{H_{\rm e}}^2 (Q = M_{\rm EWSB})$ $M_3(Q = M_{\rm EWSB})$ $A_{\tau}(Q = M_{\rm EWSB})$ $\mu(\bar{Q}=M_{\rm EWSB})$ m_A∘ $SU(2)_L$ singlets $SU(2)_{I}$ doublets $m_{\tilde{a}1_{\rm I}}(Q=M_{\rm EWSB})$ $m_{\tilde{u}_{\rm R}}(Q=M_{\rm EWSB})$ $m_{\tilde{q}2L}(Q = M_{\rm EWSB})$ $m_{\tilde{d}_{\rm EWSB}}(Q = M_{\rm EWSB})$ $m_{\tilde{a}3_{I}}(Q = M_{\rm EWSB})$ $m_{\tilde{c}_{R}}(Q = M_{\rm EWSB})$ $m_{\tilde{\ell}_{1}}(Q = M_{\rm EWSB})$ $m_{\rm s_R}(Q = M_{\rm EWSB})$ $m_{\tilde{\ell}_{2}}(Q = M_{\rm EWSB})$ $m_{\tilde{t}_{\rm R}}(Q = M_{\rm EWSB})$ $m_{\tilde{\ell}_{3_{\rm I}}}(Q=M_{\rm EWSB})$ $m_{\tilde{h}_{P}}(Q = M_{EWSB})$ $m_{\tilde{e}_{R}}(Q = M_{EWSB})$ $m_{\tilde{\mu}_{R}}(Q = M_{\rm EWSB})$

 $m_{\tilde{\tau}_{R}}(Q = M_{\rm EWSB})$

R-Parity conserved:

- **Production of SUSY particles in pairs**
- (Cascade-) decays to the lightest SUSY particle
- LSP stable, neutral and weakly interacting: neutralino (χ₁)
- LSP candidate for CDM
- less than half of the particles observed
- Great hope for discovery due to LHC CM increase to 13.6TeV (Depeche Mode "I can just can't get enough")

The Stop Cliff

An example point:

- Heavy squarks and sleptons
- Light LSP (Bino)

Stop sector:

- Lightest stop at detection mass limit
- At=3610 GeV

EW	2.0 TeV
$m_{H_d}^2$	3.65740418 TeV^2
$m_{H_{u}}^{2}$	$-0.213361994 \text{ TeV}^2$
$\operatorname{sign}(\mu)$	+
A_t	3.610 TeV
$m_{ ilde{t}_R}$	$1.27 { m TeV}$
$m_{\tilde{q}3_L}$	3 TeV
M_1	300 GeV
M_2	2 TeV
M_3	3 TeV
A_b, A_{τ}	0 GeV
aneta	10
$m_{\tilde{e}_L} = m_{\tilde{\mu}_L} = m_{\tilde{\tau}_L} = m_{\tilde{e}_R} = m_{\tilde{\mu}_R} = m_{\tilde{\tau}_R}$	2 TeV
$m_{\tilde{q}1_L} = m_{\tilde{q}2_L} = m_{\tilde{u}_R} = m_{\tilde{c}_R} = m_{\tilde{d}_R} = m_{\tilde{s}_R} = m_{\tilde{b}_R}$	$3 { m TeV}$
m_h	$125.012 { m ~GeV}$
$m_{ ilde{t}_1}$	1306 GeV
$m_{ ilde{\chi}_1^0}$	294 GeV

Higgs mass:

- Experimental error ~ 0.15GeV
- Typical non-parametric error: 2GeV
- GeV level rounding: 125GeV

Calculating a Supersymmetric Spectrum

Boundary conditions:

- High scale: SUSY breaking masses
- EWSB scale: µ, m²A(EWSB)
- Z scale: tanβ

Numerical solution of coupled RGE:

• High Scale to Low Scale in N steps

Ensure EWSB

• Iteration at EWSB scale

Radiative corrections EWSB scale:

- Higgs Potential
- Higgs and SUSY running masses to pole masses

Radiative corrections Z scale:

 Corrections to SM couplings (yukawa, W, Z

Replacing At with mh

EWSB determines iteratively:

- Higgs mass parameter mu
- CP-odd running mass

$$\overline{m}_A^2(M_{EWSB}) = \frac{1}{\cos 2\beta} \left(\hat{m}_{H_u}^2 - \hat{m}_{H_d}^2 \right) - \overline{m}_Z^2,$$

$$\mu^2(M_{EWSB}) = \frac{1}{2} \left(\left(\hat{m}_{H_u}^2 \tan \beta - \hat{m}_{H_d}^2 \cot \beta \right) \tan 2\beta - \overline{m}_Z^2 \right).$$

A_t replaced by m_h

• Need to invert Higgs mass dependence on A_t

$$M_s^2(p^2) = \begin{pmatrix} \overline{m}_{11}^2 - \Pi_{11}(p^2) + \frac{t_1}{v_1} & \overline{m}_{12}^2 - \Pi_{12}(p^2) \\ \overline{m}_{12}^2 - \Pi_{12}(p^2) & \overline{m}_{22}^2 - \Pi_{22}(p^2) + \frac{t_2}{v_2} \end{pmatrix}$$

Add the determination of A_t:

- A_t determined from a pole mass
- Need all radiative corrections
- Can only be implemented post-EWSB

Higgs Molar:

$$\begin{split} \overline{m}_{11}^2 &= \overline{m}_Z^2 \cos^2\beta + \overline{m}_A^2 \sin^2\beta, \\ \overline{m}_{22}^2 &= \overline{m}_Z^2 \sin^2\beta + \overline{m}_A^2 \cos^2\beta, \\ \overline{m}_{12}^2 &= -\frac{1}{2} (\overline{m}_Z^2 + \overline{m}_A^2) \sin 2\beta. \end{split}$$

Important:

- A spectrum calculation is iterative:
 - RGE: high scale, low scale, Z scale
 - EWSB

$$HiggsMolar(A_t) = C_3 A_t^3 + C_2 A_t^2 + C_1 A_t + C_0 + (R_2 A_t^2 + R_1 A_t + R_0) \sqrt{a_s A_t^2 + b_s A_t + c_s} = 0$$

Replacing At

Solve for A_t:

- Not possible analytically in general
- Step through the function in steps on 1MeV (just kidding)

FixedPoint problem:

$$C_{\rm FP}(A_t) = -\frac{1}{C_3} [C_2 A_t^2 + C_1 A_t + C_0 + (R_2 A_t^2 + R_1 A_t + R_0) \sqrt{a_s A_t^2 + b_s A_t + c_s}],$$

 $A_t = \sqrt[3]{C_{\rm FP}(A_t)}.$ $L_{\rm FP}(A_t) \equiv \sqrt[3]{C_{\rm FP}(A_t)},$

C_{FP} and **LFP**:

- Strong local dependence guides convergence
- But to converge need |LFP'| < 1 (against repulsive FPs etc)
- Define convergence parameter and function:

$$\mathcal{L}_{\mathrm{FP}\tau}(A_t) = \frac{1}{\tau} (\mathcal{L}_{\mathrm{FP}}(A_t) - A_t) + A_t.$$

2-loop (and higher orders):

- Enter in the mass matrix
- Soft dependence

Remnants, log(A_t) and 2-loop:

- Taken into account exactly in the EWSB iterations
- EWSB iterations are standard also in "standard" MSSM!

Proof of Concept: Beyond the benchmark point

Proof of complete Inversion in more than 1 point:

- Stepping through mh
- Specifying s1, s2, s3, s4
- Necessitates a stepper function applied regularly to identify the local minima and maxima in $m_{\rm h}$
- Close to extremal FP is complemented by a standard Bisection algorithm

It works (better than expected):

- Regions are separated
- continuous
- Small steps corresponding to changes in pseudoscalar mass and μ leads to a <2GeV deviation in mh
- 3 points (of 256) not converged

Eur. Phys. J. C (2022) 82:657

Inversion works: from m_h(A_t) to A_t(m_h)

EWSB

- m²Hu
- m²Hd
- sign(μ)
 mh,...
- Determine:
- μ
- $m^2A(EWSB)$
- At(EWSB)

Variant 2:

- μ
- $m^2A(EWSB)$

NEW

- At,...
- Determine:
- m²Hd

•

٠

• m²Hu

Variant 5:

• $m^2A(EWSB)$

At(EWSB)

μ

• mh,...

• m^2Hd

• m^2Hu

Determine:

- μ
- mA
- At,... Determine:
- m²Hd
- m²Hu

- Variant 6: μ • μ • mA
 - mh,...
 - **Determine:**
 - m²Hd
 - m²Hu
 - At(EWSB)

Eur. Phys. J. C (2022) 82:657

C++ Inheritance: Models and EWSB

Models:

- Base for initialization
- Generic bottom up running
- Generic models as function of the number of scales (up to 5)
- Generic models implement the algorithm:
 - RGE running
 - Calculating rad corrs at the right scale
 - Calculating pole masses
- Specific models implement boundary conditions (set the SUSY breaking parameters)
- Minimal models inherit from larger models of the same type

Examples:

- Base \rightarrow 2scales \rightarrow LowScaleMSSM
- Base \rightarrow 4scales \rightarrow GMSB \rightarrow mGMSB
- Base \rightarrow 4scales \rightarrow AMSB \rightarrow mAMSB

•

EWSB

- Base for initialization
- 3 classes EWSBclassic → Base
 - Algorithm specific part
 - $m^2 H_u m^2 H_d$
 - μ, mA²(EWSB) (BC at 3 scales)
 - μ, mA
- 1 class EWSBmh→ Base
 - mh
- EWSBclassic+EWSBmh
 - Alg developed for 1 EWSB variant, worked for all 3
 - Difficulty: diamond inheritance (virtual solved the problem)

Upgrades wrt SuSpect2 and Technicalities

Upgrades:

- EWSB decoding automatic
- EWSB with Higgs inversion
- Closer to respecting full SLHA specifications:
 - EXTERNAL Block index 0: non standard in SuSpect2, now standard treatment
- 1st and 2nd generation sfermion parameters separated
- Complete rad corr Charginos Neutralinos calculated on pole masses instead of previous approximations
- Kept SLHA+ capability of fixed EWSB and GUT scales
- Implemented inflation model

Code maintenance:

- Started with disk
- Moved to svn@LAL
- Moved to gitlab.in2p3.fr
- Implemented CI tests for example files

Testing:

- Comparisons with SuSpect2 (will be maintained)
- Compilation gcc 4.8.5 and 8.1.0 with severe flags (well kind of)
- Checked all example Models with valgrind

User feedback:

- in memory initialization: example code and HowTo on web page
- adding mixture of file input +in memory: use of copy constructor with HowTo on webpage

Availability:

- v3.1.1
- <u>http://suspect.in2p3.fr</u>
- wget http://suspect.in2p3.fr/tar/suspect3.tar.gz
- tar xvfz suspect3.tar.gz
- ./configure
- make
- suspect3 -d examples/mSUGRA.in

Comparisons SuSpect2 and SuSpect3

Conclusions and outlook

Proof of concept:

- Eur. Phys. J. C (2022) 82:657 m_h as fundamental parameter of the MSSM: doable
- Correct to all orders
- Stop cliff benchmark: works
- 1d scan: works •

SuSpect3:

Excellent collaboration between theorists and experimentalists lead to:

- Major rewrite of SuSpect •
- **Support for more models**
- New variants of EWSB •

Future work:

Improvements on the Higgs Inversion

