Physics at the High Energy Muon Collider

APR. 25 2023

ROBERTO FRANCESCHINI (ROMA 3 UNIVERSITY)

Open Questions on the "big picture" on fundamental physics circa 2020

EFT

EFT

- what is the dark matter in the Universe?
- why QCD does not violate CP?
- how have baryons originated in the early Universe?
- what originates flavor mixing and fermions masses?
- what gives mass to neutrinos?
- why gravity and weak interactions are so different?
- what fixes the cosmological constant?

Accelerators are excellent probes

WEAK INTERACTIONS

STRONG INTERACTIONS

Open Questions on the "big picture" on fundamental physics circa 2020

EFT

EFT

- what is the dark matter in the Universe?
- why QCD does not violate CP?
- how have baryons originated in the early Universe?
- what originates flavor mixing and fermions masses?
- what gives mass to neutrinos?
- why gravity and weak interactions are so different?
- what fixes the cosmological constant?

Accelerators are excellent probes

Open Questions on the "big picture" on fundamental physics circa 2020

EFT

EFT

- what is the dark matter in the Universe?
- why QCD does not violate CP?
- how have baryons originated in the early Universe?
- what originates flavor mixing and fermions masses?
- what gives mass to neutrinos?
- why gravity and weak interactions are so different?
- what fixes the cosmological constant?

Accelerators are excellent probes

$\mu^+\mu^-$ sensitivity to weak interactions

WEAK INTERACTIONS

STRONG INTERACTIONS

ACCELERATORS

Muon colliders

HIGHLY EFFICIENT

HIGH ENERGY COLLIDER

Luminosity Comparison

CLIC — MuColl — ×----

E_{cm} [TeV]

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

L/P_{beam} [10³⁴cm⁻²s⁻¹/MW]

The luminosity per beam power is about constant in linear colliders

It can increase in proton-

based muon colliders

2 **Strategy CLIC:** Keep all parameters at IP constant (charge, norm. emittances, betafunctions, bunch length) \Rightarrow Linear increase of luminosity with energy (beam size reduction)

Strategy muon collider: Keep all parameters at IP constant With exception of bunch length and betafunction \Rightarrow Quadratic increase of luminosity with energy (beam size reduction) Muon Colliders, EPS, July 2019 D. Schulte

Muon colliders

HIGHLY EFFICIENT

HIGH ENERGY COLLIDER

Luminosity Comparison

CLIC — MuColl — ×----

E_{cm} [TeV]

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

L/P_{beam} [10³⁴cm⁻²s⁻¹/MW]

The luminosity per beam power is about constant in

It can increase in proton-

linear colliders

based muon colliders

2 **Strategy CLIC:** Keep all parameters at IP constant (charge, norm. emittances, betafunctions, bunch length) \Rightarrow Linear increase of luminosity with energy (beam size reduction)

Strategy muon collider:

Keep all parameters at IP constant

With exception of bunch length and betafunction

 \Rightarrow Quadratic increase of luminosity with energy (beam size reduction)

D. Schulte

Muon Colliders, EPS, July 2019

Muon colliders

International Muon Collider Collaboration formed to establish the physics case and the feasibility of a high energy muon collider

With exception of					mmit	Ready to
\Rightarrow Quadratic incre	10 ⁻¹	10 ⁰	10 ¹	10 ²		construct
D. Schulte		CM Energy [TeV]				

Roberto Franceschini - Physics at the high-energy muon collider

2208.06030

ve Timeline

International UON Collider llaboration

Muons collisions

DIRECT SEARCHES

production of SM and new physics in direct $\mu^+\mu^-$ annihilation

HIGH-INTENSITY PROBES

production of SM and new physics using beam constituents (e.g. W bosons)

HIGH-ENERGY PROBES

indirect probes of new physics in direct $\mu^+\mu^-$ annihilation

$s \ge 3 \text{ TeV}$ center of mass brings significant extension compared to HL-LHC

DIRECT SEARCHES

production of SM and new physics in direct $\mu^+\mu^-$ annihilation

HIGH-INTENSITY PROBES

production of SM and new physics using beam constituents (e.g. W bosons)

HIGH-ENERGY PROBES

indirect probes of new physics in direct $\mu^+\mu^-$ annihilation

$s \ge 3 \text{ TeV}$ center of mass brings significant extension compared to HL-LHC

DIRECT SEARCHES

production of SM and new physics in direct $\mu^+\mu^-$ annihilation

HIGH-INTENSITY PROBES

production of SM and new physics using beam constituents (e.g. W bosons)

HIGH-ENERGY PROBES

indirect probes of new physics in direct $\mu^+\mu^-$ annihilation

$s \ge 3 \text{ TeV}$ center of mass brings significant extension compared to HL-LHC

DIRECT SEARCHES

production of SM and new physics in direct $\mu^+\mu^-$ annihilation

HIGH-INTENSITY PROBES

 production of SM and new physics using beam constituents (e.g. W bosons)

HIGH-ENERGY PROBES

 indirect probes of new physics in direct annihilation

$s \gtrsim 3 \text{ TeV}$ center of mass brings significant extension compared to HL-LHC

Microscope & Factory

Microscope & Factory

Towards a Muon Collider

118 pages e-Print: 2303.08533 [physics.acc-ph] Report number: FERMILAB-PUB-23-123-AD-PPD-T

https://arxiv.org/abs/2303.08533

DIRECT SEARCHES

production of SM and new physics in direct $\mu^+\mu^-$ annihilation

HIGH-INTENSITY PROBES

 production of SM and new physics using beam constituents (e.g. W bosons)

HIGH-ENERGY PROBES

 indirect probes of new physics in direct annihilation

$s \gtrsim 3 \text{ TeV}$ center of mass brings significant extension compared to HL-LHC

DIRECT SEARCHES

production of SM and new physics in direct $\mu^+\mu^-$ annihilation

HIGH-INTENSITY PROBES

production of SM and new physics using beam constituents (e.g. W bosons)

HIGH-ENERGY PROBES

indirect probes of new physics in direct $\mu^+\mu^-$ annihilation

 $\sqrt{s} \gtrsim 3 \, {
m TeV}$ center of mass brings significant extension compared to HL-LHC

$\mu^+\mu^- \rightarrow SM\,SM\,\nu\bar{\nu}$

STANDARD MODEL

"FACTORY"

tth production at the LHC (Fully hadronic)

Roberto Franceschini - Physics at the high-energy muon collider

NEW PHENOMENA AND NEW REGIMES IN pQFT

- weak corrections become "ordinary"
- weak "partons"
- large EW logarithms

SH& NEW PARTICLES

Can produce heavy new physics (colored or not)

Roberto Franceschini - Physics at the high-energy muon collider

figure shows a rough estimate of the center of mass energy, proton-proton collider to have equivalent sensitivity of a lep to physics at the $E \sim \sqrt{s_L}$ energy scale. The estimate is hadron collider cross-section, for a given process occurring a the "analogous" process (e.g., the production of the same h the lepton collider

Can produce heavy new physics (colored or not)

Roberto Franceschini - Physics at the high-energy muon collider

figure shows a rough estimate of the center of mass energy, proton-proton collider to have equivalent sensitivity of a lep to physics at the $E \sim \sqrt{s_L}$ energy scale. The estimate is hadron collider cross-section, for a given process occurring a the "analogous" process (e.g., the production of the same h the lepton collider

$\mu^+\mu^- \rightarrow \text{new physics}$

VALENCE

MUONS

Roberto Franceschini - Physics at the high-energy muon collider

BEST POSITION TO OBSERVE ANY SIGN OF ELECTROWEAK NEW PHYSICS

(e.g. in the Higgs sector, or from new strong interactions at the TeV, fermions mass and mixing generation at the TeV)

Any sign of SUSY below the TeV will be observable, no matter if the sparticles are colored or not.

2HDM

DOUBLETS

BIG JUMP AT FUTURE COLLIDERS

Roberto Franceschini - Physics at the high-energy muon collider

There is in general a weak sensitivity to new scalars, because of:

- "small" cross-sections
- large backgrounds

it is hard to explore the scalar sector and the only big discovery of the LHC may be left unmatched ... even if light scalars may exist.

"Valence" Leptons

reach for new physics at $\sqrt{s/2}$

SH& NEW PARTICLES

Weak Bosons collider

at $\sqrt{s} \gg 100 \text{ GeV}$

SH& NEW PARTICLES

Higgsboson

At 3 TeV the weak bosons are sufficiently light that can be radiated very efficiently

 $\sqrt{s} = 3 \,\text{TeV}$ $\sigma \cdot \mathscr{L} \Rightarrow O(10^6) \,\text{h}$

• large number of Higgs bosons!

FURTHER OPPORTUNITIES

- ultra-rare Higgs decays
- differential distribution
- off-shell Higgs bosons
- rare production modes

At 30 TeV the weak bosons are sufficiently light that can be radiated very efficiently

$\sqrt{s} = 30 \,\mathrm{TeV}$ $\sigma \cdot \mathscr{L} \Rightarrow O(10^8) \,\mathrm{h}$

• large number of Higgs bosons!

FURTHER OPPORTUNITIES

- ultra-rare Higgs decays
- differential distribution
- off-shell Higgs bosons
- rare production modes

- Higgs factory at 3 TeV
- 10 × Higgs factory at 10 TeV
- 100 × Higgs factory at 30 TeV

At 30 TeV the weak bosons are sufficiently light that can be radiated very efficiently

- off-shell Higgs bosons
- rare production modes.

Summary: Higgs@FC (by couplings)

precision reach on effective Higgs couplings from SMEFT global fit _-LHC S2 + LEP/SLD \blacksquare CEPC +360GeV₁ combined in all lepton collider scenarios) FCC Z₁₅₀/WW₁₀/240GeV₅ Free H Width FCC +365GeV_{1.5} subscripts denote luminosity in ab⁻¹, Z & WW denote Z-pole & WW threshold no H exotic decay Higgs couplings 10- 10^{-2} 10^{-3} 10^{-4} δg_H^{WW} δg_{H}^{gg} δg_{H}^{ZZ} $\delta g_{H}^{\gamma\gamma}$ $\delta g_{H}^{Z\gamma}$

$\rightarrow SMSM \nu \bar{\nu}$ μ

STANDARD MODEL

"FACTORY"

$\sigma(tt\nu\nu)$

- large number of top quarks!
 - rare top decays
 - differential distribution
 - rare production modes

$\mu^+\mu^- \rightarrow SM\,SM\,\nu\bar{\nu}$

STANDARD MODEL

"FACTORY"

At 30 TeV the weak bosons are sufficiently light that can be radiated very efficiently

$\sqrt{s} = 30 \,\mathrm{TeV}$ $\sigma \cdot \mathscr{L} \Rightarrow O(10^6) \,\mathrm{t\bar{t}}$

- large number of top quarks!
 - rare top decays
 - differential distribution
 - rare production modes
$\mu^+\mu^- \rightarrow SM\,SM\,\nu\bar{\nu}$

STANDARD MODEL

"FACTORY"

At 30 TeV the weak bosons are sufficiently light that can be radiated very efficiently

$\sqrt{s} = 30 \,\mathrm{TeV}$ $\sigma \cdot \mathscr{L} \Rightarrow O(10^6) \,\mathrm{t\bar{t}}$

- large number of top quarks!
 - rare top decays
 - differential distribution
 - rare production modes

$\mu^+\mu^- \rightarrow SM\,SM\,\nu\bar{\nu}$

STANDARD MODEL

"FACTORY"

tth production at the LHC (Fully hadronic)

Roberto Franceschini - Physics at the high-energy muon collider

NEW PHENOMENA AND NEW REGIMES IN pQFT

- weak corrections become "ordinary"
- weak "partons"
- large EW logarithms

Higgs + Singlet

 Broad coverage of BSM scenarios: (N)MSSM, Twin Higgs, Higgs portal, modified Higgs potential (Baryogenesis)

Roberto Franceschini - Physics at the high-energy muon collider

Phenomenology is also useful as "simplified model"

Higgs + Singlet BIG JUMP AT FUTURE COLLIDERS

$h_{125} - \underbrace{\sim}_{h_0}^{SM}$

$\begin{array}{c} \mathsf{EXPLOIT} \text{ ONCE MORE THE} \\ W \text{ BOSON LUMINOSITY} \end{array}$

Roberto Franceschini - Physics at the high-energy muon collider

 $\sin^2 \gamma$

Higgs + Singlet SINGELTS **BIG JUMP AT FUTURE COLLIDERS**

EXPLOIT ONCE MORE THE W BOSON LUMINOSITY

Higgs + Singlet SINGELTS **BIG JUMP AT FUTURE COLLIDERS**

Probe new physics in two complementary ways at the same time

A global fit of "top \subset SM" to search for couplings deviations in $\mu\mu$ collider top factory"

The same muon collider that acts as "top factory" can also test directly the existence of new states responsible for the deviations in the couplings

Roberto Franceschini - Physics at the high-energy muon collider

same machine can perform complementary direct and indirect tests of BSM

Indirect Effects

A heavy Z'

DRELL-YAN

RATES AND ANGULAR DISTRIBUTIONS

Roberto Franceschini - Physics at the high-energy muon collider

 $\sqrt{s} \simeq 3$ TeV can probe 70+ TeV mass for $g_{Z'} \simeq g_{SM} \simeq 0.67$

A heavy Z'

DRELL-YAN

RATES AND ANGULAR DISTRIBUTIONS

flashing concrete results for Dark Matter at the weak scale

Electroweak Dark Matter: LSP (+NLSP)

• The chessboard of DM is very large!

 High energy colliders are excellent and very robust probes of WIMPs!

WIMP Dark Matter as SU(2) n - plet

Roberto Franceschini - Physics at the high-energy muon collider

DM sp	oin	EW n-plet	M_{χ} (TeV)	$(\sigma v)_{\rm tot}^{J=0}/(\sigma v)_{\rm max}^{J=0}$	$\Lambda_{\rm Landau}/M_{\rm DM}$	$\Lambda_{\rm UV}/M_{\rm DM}$
		3	2.53 ± 0.01	_	3×10^{37}	$4 \times 10^{24*}$
Real scalar		5	15.4 ± 0.7	0.002	5×10^{36}	2×10^{24}
	7	54.2 ± 3.1	0.022	2×10^{19}	2×10^{24}	
	9	117.8 ± 15.4	0.088	3×10^3	2×10^{24}	
		11	199 ± 42	0.25	20	3×10^{24}
		13	338 ± 102	0.6	3.5	3×10^{24}
Majorana fermion		3	2.86 ± 0.01	_	3×10^{37}	$8 \times 10^{12*}$
		5	13.6 ± 0.8	0.003	3×10^{17}	5×10^{12}
	7	48.8 ± 3.3	0.019	1×10^4	4×10^7	
		9	113 ± 15	0.07	30	3×10^7
		11	202 ± 43	0.2	6	3×10^7
	13	324.6 ± 94	0.5	2.6	3×10^7	

a "collection" of Dark Matter candidates with thermal mass from 1 TeV to fraction of PeV

Higgsino DM

STUB-TRACKS EXOTIC SIGNAL

- Heavy n-plet of SU(2)
- Mass splitting ~ $\alpha_w m_W \sim 0.1 \text{ GeV} \text{GeV}$

Electroweak Dark Matter: LSP (+NLSP)

Wide open spectra

Co-annihilation

GeV -

Λm

WIMP-like multiplet Accidental Dark Matter

DM SM singlet $pp \text{ or } \ell^+ \ell^- \rightarrow Z' \rightarrow \chi \chi \quad 0 \ \ \, \Box$

Generic leptons+missing momentum Soft-objects + missing momentum Short (disappearing) tracks Mono-X

Roberto Franceschini - Physics at the high-energy muon collider

Precision Tests

Electroweak Dark Matter: LSP (+NLSP)

Wide open spectra

Co-annihilation

GeV -

Λm

WIMP-like multiplet Accidental Dark Matter

DM SM singlet $pp \text{ or } \ell^+ \ell^- \rightarrow Z' \rightarrow \chi \chi^{0}$ Generic leptons+missing momentum Soft-objects + missing momentum Short (disappearing) tracks Mono-X

Roberto Franceschini - Physics at the high-energy muon collider

Precision Tests

Large χ mass requires CoM energy!

Weak radiation yield the most constraining channel "mono-W"

mono- γ mono-Wtracklets

2009.11287, 2107.09688, 2205.04486

Roberto Franceschini - Physics at the high-energy muon collider

Electroweak Dark Matter: LSP (+NLSP)

Wide open spectra

Co-annihilation

GeV -

Λm

WIMP-like multiplet Accidental Dark Matter

DM SM singlet $pp \text{ or } \ell^+ \ell^- \rightarrow Z' \rightarrow \chi \chi \quad 0 \ \ \, \Box$

Generic leptons+missing momentum Soft-objects + missing momentum Short (disappearing) tracks Mono-X

Roberto Franceschini - Physics at the high-energy muon collider

Precision Tests

Electroweak Dark Matter: LSP (+NLSP)

Wide open spectra

Co-annihilation

GeV -

Λm

WIMP-like multiplet Accidental Dark Matter

DM SM singlet $pp \text{ or } \ell^+ \ell^- \rightarrow Z' \rightarrow \chi \chi^0$ Generic leptons+missing momentum Soft-objects + missing momentum Short (disappearing) tracks Mono-X

Roberto Franceschini - Physics at the high-energy muon collider

Precision Tests

 $\ell^+\ell^- \to f\bar{f}, Zh, W^+W^-, Wff'$

Roberto Franceschini - Physics at the high-energy muon collider

	exclusive			inclusive			
2202.10509		$W \times 10^{-1}$	7	$W \times 10^7$			
3 TeV		[-53, 53]		[-41, 41]			
$10 { m TeV}$	[-5.71, 5.		71]	[-3.71, 3.71]		_	
14 TeV	-	-3.11, 3.	11]	[-1.90, 1.90]			
$30 { m TeV}$	[-0.80, 0.		80]	[-0.42, 0.42]		-	
·		Ī				-	
10 TeV		DL	$ e^{\mathrm{D}}$	$^{L}-1$	$\operatorname{SL}(\frac{\pi}{2})$		
$\ell_L \to \ell'_L$		-0.82	-0.56		0.33	Π	
$\ell_L \to q_L$		-0.78	-0.54		0.34		
$\ell_L \to e_R$		-0.56	-0.43		0.17		
$\ell_L \to u_R$		-10gut85:	95%0138nsiti		vities that the W	ł	
$\ell_L \to d_R$		process a	process are cons		e., seminigclus n the left pan	iv el	
$\ell_R \to \ell'_L$		-and56	h rad	ti43) a	nd a (1 hat or	ily	
$ \ell_R \to q_L $		$\left -0.53 \right _{\text{The final risk}}$		0.41	0.16	in	
$\left \ell_R \to \ell'_R \right $		-i0.B0e 4. The		le 26 ure	display99he s		
$\ell_R \to u_R$		dashed.	$\frac{1 \text{ the}}{\Gamma \text{he}}$	ombinec minimatic	n of all meas	ia: ur	
$\ell_R \to d_R$		-3010,74	and 3	7. TO , co	pmpgripg5the	se	

At the High-Luminosity LHC (HL-LHC), it will be at the level of $4 \cdot 10^{-5}$ and $8 \cdot 10^{-5}$, respectively, a that the 3 TeV muon collider would improve by or sensitivity improves quadratically with the muon collid projects [80] CLIC at 3 TeV has the best sensitivity of

nd Y paramet minus exclus The right pa exists at the

 $W \times 10^6$

luding all ch sitivity conto ged and of n ments is also sitivity of ex

Electroweak Dark Matter: LSP (+NLSP)

Roberto Franceschini - Physics at the high-energy muon collider

"WIMP" Dark Matter

Electroweak symmetry breaking

Big picture questions:

Roberto Franceschini - Physics at the high-energy muon collider

Extended Higgs Sector

back to "valence" muon collisions and direct production of new physics

Higgs compositeness

Electroweak symmetry breaking

Big picture questions:

Roberto Franceschini - Physics at the high-energy muon collider

Extended Higgs Sector

back to "valence" muon collisions and direct production of new physics

"The size of the Higgs boson"

it matters because being "point-like" is the source of all the theoretical questions on the Higgs boson and weak scale

... and if it is not ... well, that is physics beyond the Standard Model!

h~π

STRONGLY INTERACTING LIGHT HIGGS

$$\begin{aligned} \mathcal{L}_{universal}^{d=6} &= c_{H} \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{H} + c_{T} \frac{N_{c} \epsilon_{q}^{4} g_{*}^{4}}{(4\pi)^{2} m_{*}^{2}} \mathcal{O}_{T} + c_{6} \lambda \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{6} + \frac{1}{m_{*}^{2}} [c_{W} \mathcal{O}_{W} + c_{B} \mathcal{O}_{B}] \\ &+ \frac{g_{*}^{2}}{(4\pi)^{2} m_{*}^{2}} [c_{HW} \mathcal{O}_{HW} + c_{HB} \mathcal{O}_{HB}] + \frac{y_{t}^{2}}{(4\pi)^{2} m_{*}^{2}} [c_{BB} \mathcal{O}_{BB} + c_{GG} \mathcal{O}_{GG}] \\ &+ \frac{1}{g_{*}^{2} m_{*}^{2}} \left[c_{2W} g^{2} \mathcal{O}_{2W} + c_{2B} g'^{2} \mathcal{O}_{2B} \right] + c_{3W} \frac{3! g^{2}}{(4\pi)^{2} m_{*}^{2}} \mathcal{O}_{3W} \\ &+ c_{y_{t}} \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{y_{t}} + c_{y_{b}} \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{y_{b}} \end{aligned}$$

Roberto Franceschini - Physics at the high-energy muon collider

$$1/f \sim g_{\star}/m_{\star}$$

 $1/(g_{\star}f) \sim 1/m_{\star}$

$$g_{SM}/(g_{\star}f) \sim g_{SM}/m_{\star}$$

 $\boldsymbol{\wedge}$

$l^+l^- \rightarrow VV+X$

DI-BOSON

MULTI-BOSON

ZH: BSM and SM amplitudes have the same angular dependences, so the most powerful analysis is a simple cut-and-count. WW: BSM and SM amplitudes **do not** have the same angular dependences, so the most powerful analysis is differential! **multi-body** can contain hard sub-scattering with net electric charge, e.g. $e\nu \rightarrow Wh$, WZ with new BSM couplings dependence

STRONGLY INTERACTING TOP AND HIGGS

$$\mathcal{L}_{universal}^{d=6} = c_{H} \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{H} + c_{T} \frac{N_{c} c_{q}^{4} g_{*}^{4}}{(4\pi)^{2} m_{*}^{2}} \mathcal{O}_{T} + c_{6} \lambda \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{6} + \frac{1}{m_{*}^{2}} [c_{W} \mathcal{O}_{W} + c_{B} \mathcal{O}_{B}]$$

$$+ \frac{g_{*}^{2}}{(4\pi)^{2} m_{*}^{2}} [c_{HW} \mathcal{O}_{HW} + c_{HB} \mathcal{O}_{HB}] + \frac{y_{t}^{2}}{(4\pi)^{2} m_{*}^{2}} [c_{BB} \mathcal{O}_{BB} + c_{GG} \mathcal{O}_{GG}]$$

$$\mathcal{J}_{q} = \frac{1}{g_{*}^{2} m_{*}^{2}} [c_{2W} g^{2} \mathcal{O}_{2W} + c_{2B} g'^{2} \mathcal{O}_{2B}] + c_{3W} \frac{3! g^{2}}{(4\pi)^{2} m_{*}^{2}} \mathcal{O}_{3W}$$

$$+ \frac{1}{g_{*}^{2} m_{*}^{2}} \mathcal{O}_{y_{t}} + c_{y_{b}} \frac{g_{*}^{2}}{m_{*}^{2}} \mathcal{O}_{y_{b}}$$

$$f_{min}^{w,h}$$

$$1/f \sim g_{\star}/m_{\star}$$

$$1/(g_{\star}f) \sim 1/m_{\star}$$

$$g_{SM}/(g_{\star}f) \sim g_{SM}/m$$

STRONGLY INTERACTING TOP AND HIGGS

STRONGLY INTERACTING TOP AND HIGGS

compositeness at few TeV @ HL-LHC

compositeness at few 10 TeV

Lookingahead

compositeness at few TeV @ HL-LHC

UNIQUE AVENUE TO EXPLORE WEAK INTERACTIONS FAR OFFSHORE FROM THE WEAK SCALE

compositeness at few 100 TeV

Microscope & Factory

Microscope & Factory

Summary and outlook: Higgs boson

• We have ambitious plans to thoroughly probe the Higgs boson

Summary and outlook: BSM

rana ajorana Dirac C. Scalar Dirac

"WIMP" Dark Matter

EW symmetry breaking

EW phase transition see backup

Roberto Franceschini - Physics at the high-energy muon collider

100 TeV

10+ TEV

Extraordinary probes of Higgs boson,

electroweak new physics and Dark Matter

3 TEV

Direct detection of extra Higgs states at 1 TeV FCC-hh

200-300 GeV

energy

Ö

effective

UON Collider Collaboration

Precision study of the Higgs boson $h_2 \rightarrow h_1 h_1$ ($b\bar{b}\gamma\gamma + 4\tau$) $(h_2 \sim S, h_1 \sim H)$

ilr

İİL

intensity frontier

Possible scenarios of future

Construction/Transformation

TIME TO WORK ON MUON COLLIDER PHYSICS IS NOW!

TIME TO WORK ON MUON COLLIDER PHYSICS IS NOW! TALK TO YOU AT DINNER!

transition

flashing concrete results for Electroweakphase

Roberto Franceschini - Physics at the high-energy muon collider

Modifications of the Higgs potential \Rightarrow Out of Equilibrium transition from one vacuum to a new energetically favorable one

Electroweak phase transition

(H) + 0

 $V_{\text{therm}} \sim T^2$

- We need to study all possible new states that induce a change in the Higgs boson potential.
 - For these new state to have sizable effects in the early Universe they must be light, around 1 TeV at most.
 - All searches for new Higgs bosons (or general electroweak particles) probe such fundamental issue of the origin of matter in the early Universe!

COLLIDER

W BOSON

High-Energy lepton collider has large flux of "partonic" W bosons

• gg collisions as usual

Roberto Franceschini - Physics at the high-energy muon collider

Singlet tree and loop makes V(0,v) deeper

DIRECT & INDIRECT

INTERPLAY

$$\begin{split} V(\Phi,S) &= -\mu^2 \left(\Phi^{\dagger} \Phi \right) + \lambda \left(\Phi^{\dagger} \Phi \right)^2 + \frac{a_1}{2} \left(\Phi^{\dagger} \Phi \right) S \\ &+ \frac{a_2}{2} \left(\Phi^{\dagger} \Phi \right) S^2 + b_1 S + \frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4. \\ &\text{independent parameters} \\ &\{ M_{h_2}, \theta, v_s, b_3, b_4 \} \end{split}$$

DIRECT & INDIRECT

INTERPLAY

$$\begin{split} V(\Phi,S) &= -\mu^2 \left(\Phi^{\dagger} \Phi \right) + \lambda \left(\Phi^{\dagger} \Phi \right)^2 + \frac{a_1}{2} \left(\Phi^{\dagger} \Phi \right) S \\ &+ \frac{a_2}{2} \left(\Phi^{\dagger} \Phi \right) S^2 + b_1 S + \frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4. \\ &\text{independent parameters} \\ &\{ M_{h_2}, \theta, v_s, b_3, b_4 \} \end{split}$$

DIRECT & INDIRECT

INTERPLAY

parameters space of 1st order phase transition accessible by several measurements available at the 3 TeV $\ell^+\ell^-$ collider

