Anticipating an Avalanche of Astrophysical Transients

Daryl Haggard McGill University Canada Research Chair IPAG Visitor (through July 2023)

A New Era of Black Hole Discover

KÂ

- Detecting gravitational waves is a triumph of ingenuity
- Discoveries offer new tests of GR
- Have also uncovered a spectacular unseen population of BHs and BH-BH mergers
- GW experiments have also seen NS-NS and BH-NS collisions

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

GW170817 confirmed NS merger origin for short GRBs

- Accretion onto central compact remnant launches relativistic jet
- Shocks within the jet emit short pulse of Gamma-rays (**GRB**)
- Relativistic jet shocks the ISM, producing synchrotron afterglow emission from X-ray through radio
- NS-NS merger also causes an explosion called a "kilonova" (KNe)

Slide Credit: J. Ruan

GW170817

• **localized** within a

Margutti, Fong, & DH 2019

GW170817 vs. sGRBs

- GW170817's rising X-ray emission & low luminosity (despite being close!) set it apart from most sGRBs
- After peak, the decline is consistent with SGRB afterglows
- Expected from a jet pointed away from our line of sight

GW170817 SED

 Radio-to-X-ray SED shows no evolution in the first ~360 days after merger

 $F_v \propto v^{-\alpha}$, $\alpha = 0.6$

- Radio & X-ray from non-thermal synchrotron afterglow emission
- UV/optical/NIR from kilonova until ~100 days post-merger
- Relativistic outflow emission dominates UV/optical/NIR after 100 days

GW170817 Afterglows

- X-ray and radio observations of GW170817 over the first ~3.3 years (1234 days) since the merger
- Emission modeled by off-axis (~30°) structured relativistic jet w/ E_{tot} ~ 10⁵⁰ erg and low density medium (n ~ 10⁻² cm⁻³; blue lines)
- New component: synchrotron radiation from a mildly relativistic shock due to the dynamical ejecta, "kilonova afterglow" (red lines)

Fernández, et al, 2017

Kilonovae from BH/NS Mergers?

- Early peak, rapid fading in bluer wavelengths
- Slower fading in red/IR wavelengths
- Dependence on viewing angle

Slide credit: Nick Vieira

Canada-France-Hawaii Telescope Follow-up: GW190814

Sadly no EM counterpart...

- >100 candidates reported in 2 weeks
- Many w/ spectral/photo classification
- Early hunt: visual inspection
- Most sources came from image differencing pipelines

Slide credit: Nick Vieira

LIGO-Virgo-KAGRA will soon make a come-back...

observing

anticipate

GRA

LIGO-Virgo-KA

facilities

generation

next

dovetail with

5

Observing Run 4 (O4):

- Science run will begin 24 May 2023, w/ 18 calendar months of observing
- Additional observing time will increase the scientific output of O4; coating development for O5 will be finalized; O5 test masses will subsequently be coated for expected start of run in early 2027

LVK Observing Plan (updated Nov. 2022)

- Localizations in O4/O5 (KAGRA only online part of O4, no LIGO India)
- Improved sensitivity & longer 18-month run for O4 improves rates
- Expect further improvements for O5 (w/ fulltime KAGRA!)

LVK Rates for O4 & O5

- Predictions based on O1, O2, O3 and outcomes of recent upgrades
- EM follow-up must accommodate large localizations (~100 deg²)
- Expect 2-10 NS-NS and NS-BH mergers in O4
- Expect 10+ NS-NS and NS-BH mergers in O5

LVK Rates for O4 & O5

- Predictions based on O1, O2, O3 and outcomes of recent upgrades
- EM follow-up must accommodate large localizations (~100 deg²)
- Expect 2-10 NS-NS and NS-BH mergers in O4
- Expect 10+ NS-NS and NS-BH mergers in O5

Expect 2-10 NS-NS / BH-NS GW mergers in O4 (100 deg²) – *the search for EM counterparts is back on*!!

Should You Trigger?: GWSkyNet

GWSkyNet is a machine learning classifier

developed by UBC LIGO team

(Cabero et al 2020)

facilitates potential EM follow-up obs

- distinguishes between astrophysical events and instrumental artifacts in lowlatency using public alert data as inputs
- offers info complementary to that available in other low latency pipelines
- good performance: e.g., low false negative rate, especially for EM-bright src

GWSkyNet Architecture

- Different branches in GWSkyNet's architecture analyze different features of inputs:
- Details in Cabero et al. 2020

GWSkyNet(Multi)

- Multi-class classifier to distinguish between glitches and real sources PLUS offer rough classification
- Details in Abbott, Buffaz, et al. 2022
- More on interpretability/ explainability coming soon!

⁽b) NS-versus-all confusion matrix.

What about that Kilonova?

Characterizing a Kilonova

- Short gamma ray burst: *seconds*
- X-ray/radio from structured relativistic jet: *months years*
- ultraviolet/optical/infrared: hours days up to a week = Kilonova
 - KNe tidal ejecta confined to the plane of the merger
 - Post-merger ejecta, *e.g.*, disk outflows: roughly isotropic

Ascenzi et al. 2021

Characterizing a Kilonova

- Short gamma ray burst: *seconds*
- X-ray/radio from structured relativistic jet: *months years*
- ultraviolet/optical/infrared: hours days up to a week = Kilonova
 - Multiple components:

Red: heavier *r*-process elements \rightarrow large opacity in UV, optical

Blue: lighter *r*-process elements \rightarrow smaller opacities

Slide Credit: N.Vieira

Ascenzi et al. 2021

H			Big Bang fusion			Dying low-mass stars		Exploding massive stars		H N	lumar Io stal	hesis otopes	3		He		
Li 3	Be 4		Cos	smic	Merging			Exploding				B 5	C 6	N 7	O 8	F 9	Ne 10
Na 11	Mg 12		fiss	ion	stars			dwarfs				Al 13	Si 14	P 15	S 16	CI 17	Ar 18
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Te 52	 53	Xe 54
Cs 55	Ba	<u>م</u>	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
	Ra	~		NNNNNNNNN	XXXXXXXXXXX	*****			NNNNSSSSSSSS		NNNNNNOGO		NNNNNN000				
87	88		La 57	Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	H0 67	Er 68	Tm 69	Yb 70	Lu 71
			Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

Exquisite Photometry and Spectroscopy

Can we infer abundances of individual elements from the spectra of GW170817's KNe?

Vieira et al. 2023 Data: Pian et al. 2017, Smartt et al. 2017

Spectral r-Process Abundance Retrieval for KNe (SPARK)

Spectral Retrieval: Generate many synthetic spectra & compare to obs

→ Fit for *r*-process abundance pattern of GW170817

BUT this process is...

- 1. computationally expensive
- many elements → high dimensionality if we naively fit for each abundance individually

Vieira et al. 2023

Inference regimes

dimensionality of parameter space

Slide Credit: N.Vieira

Parametrizing the abundances

- Parametrize using electron fraction, expansion velocity, and entropy $Y_{\rm e}, v_{\rm exp}, \ S$
- Constrain fundamental conditions of the *r*process

Vieira et al. 2023; Mapping from Wanajo et al. 2018

Inference regimes

dimensionality of parameter space

computationally expensive simulation

Slide Credit: N.Vieira

SPARK: Spectroscopic r-Process Abundance Retrieval for Kilonovae

Vieira et al. 2023

Radiative transfer with TARDIS

- 1D Monte Carlo radiative transfer code for spectral synthesis
- Radiation-matter interactions in a stratified medium under homologous expansion (*e.g.*, supernovae, kilonovae)
- Produce a synthetic spectrum at a single point in time
- Computationally expensive

Gaussian Processes

- GPs can approximate a function by conditioning on data *and* can provide uncertainties
- In our case, we have some point θ_i and the function we care about is the **posterior** $p(\theta|X)$
 - Train our GP on pairs

 $\theta_i, \ p(\theta_i|X)$

Görtler et al. 2019 <u>https://distill.pub/2019/visual-exploration-gaussian-processes/</u>

Bayesian Active Posterior Estimation (BAPE) $u^{\text{EV}}(\theta) = \exp(2\mu(\theta) + \sigma^2(\theta))(\exp(\sigma^2(\theta)) - 1)$

Kandasamy et al. 2017

Posterior at 1.4 days

- BAPE sampled where expected
- only 1140 samples to adequately constrain the posterior
- Bimodal!
 - blue electron fraction, hot
 (high) entropy
 - purple electron fraction,
 warm (moderate) entropy

All forward model evaluations & best fits

Vieira et al. 2023

What Do SPARK Fits Tell Us?

Physical Parameters

parameter	SPARK blue+hot
$\log_{10}(L_{\rm outer}/L_{\odot})$	$7.784\substack{+0.016\\-0.018}$
$\log_{10}(ho_0 / { m g~cm^{-3}})$	$-15.069\substack{+0.511\\-0.409}$
$v_{ m inner}/c$	$0.313\substack{+0.015\\-0.016}$
$v_{ m exp}/c$	$0.176\substack{+0.091 \\ -0.099}$
Y_e	$0.351\substack{+0.025\\-0.025}$
$s \; [k_{\rm B}/{\rm nucleon}]$	$25.3^{+6.0}_{-4.5}$
$T_{\rm inner}$ [K]	3962^{+102}_{-109}
$M_{ m ej} \left[M_{\odot} ight]$	$> 3.5^{+4.2}_{-3.3} \times 10^{-5}$
$[M_\oplus]$	$> 11.8^{+13.8}_{-11.1}$
$X_{ m lan}$	$\leqslant 5.6~ imes 10^{-9}$

Vieira et al. 2023

Inference is now computationally tractable

- Purple band: forward model evaluation time
- Typical MCMC would take a year
- **SPARK**: less than a week!

As our model develops in complexity, the purple band will move to the right.

Vieira et al. 2023

SPARK Future Work

- Obtained the full abundance pattern of GW170817 at 1.4 days
- Established SPARK as a successful tool
- In the future:
 - Multi-component models
 - Multi-epoch fitting
 - Fit new kilonovae in O4 (starting in May 2023)!

Vieira et al. in prep

Dimensionality Reduction

Auto Encoder = unsupervised, generative

Training ~10 hrs/latent dimension configuration

Run AE w/ *n* different layer configurations, store models

Find **optimal #** of latent space dimensions

For our data, 5 dimensions!

Ford et al. in prep

Clustering Analysis

Clustering Analysis Bayesian Gaussian Mixture Model ~ 5 min training (observed spectrum at 1.5 days;

modelled w/ 1500 SPARK spectra)

10

0

-10

-20

-10

Latent Space Component 1

10

S

Ford et al. in prep

This is bound to get even more interesting...

- Next generation ground-based GW observatories:
 Cosmic Explorer and/or Einstein Telescope
- In space: Laser Interferometer Space Antenna (LISA)
- Many future ground and space missions targeting transients and multi-messenger astrophysics: CASTOR, ULTRSAT, SVOM, STAR-X, UVEX, Rubin/LSST, SKA, ngVLA, EHT/ngEHT, Strobe-X, AXIS, Arcus, Theseus, Athena, Lynx, and more!

Advance planning some really BIG data!!

CanDIAPL = Canadian Data-Intensive Astrophysics PLatform (PI: Renée Hložek, UofT/Dunlap)

Motivated by

- Vera C. Rubin Observatory
- Square Kilometre Array
- SKA pathfinders:
 - Meer Karoo Array Telescope (MeerKAT)
 - Murchison Widefield Array (MWA)
 - Australian SKA Pathfinder (ASKAP)
- Multi-messenger Facilities

