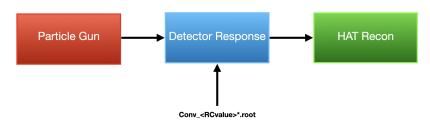


Ongoing activities

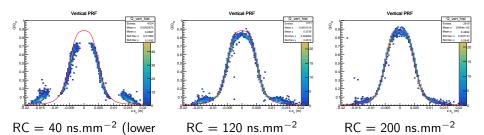
Ulysse VIRGINET

Table of Contents

Simulations with the ND280Software

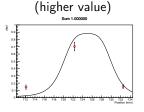

2 Simulations with Pierre's code

Introduction


- Nowadays, the PRF used to fit the data is parameterised thanks to DESY data.
- Since this PRF is "RC-dependant" and "drift-dependant", it becomes important to know how much the variations of RC and/or drift can impact the fit performed with the PRF, and by the way the spatial resolution that we obtain.
- Thus the idea of this work is to simulate tracks and to study the corresponding detector response for different values of RC and drift.

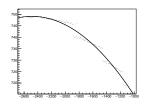
The procedure

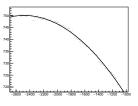
- One has to generate a root file per value of RC that one wants to simulate
- Then the latter is used as an input for the Detector Response simulation:



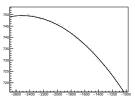
Results of the PRF fit

(expected value)

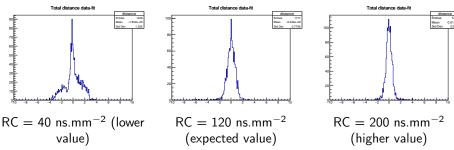

• A too low value of RC favours charge spreading and lower the $\frac{Q_{main}}{Q_{cluster}}$ ratio, then the fit doesn't manage to reconstruct correctly the position of the track, here is an example with RC = 40:


value)

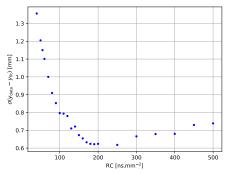
Impact on the spatial resolution

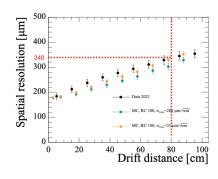

 In the case of low RC value, one can observe breaks and shifts between the simulated data and the fit:

 $RC = 40 \text{ ns.mm}^{-2} \text{ (lower value)}$


 $RC = 120 \text{ ns.mm}^{-2}$ (expected value)

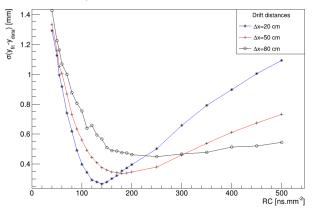
 $RC = 200 \text{ ns.mm}^{-2}$ (higher value)


Distances between data and fit


 One can generate histograms of the distance between data and fit for the different RC values:

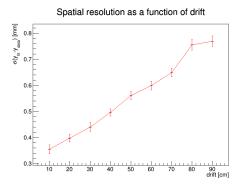
 As a first approximation, the standard deviations of these histograms give an estimation of the spatial resolution (I am currently implementing Gaussian fit...)

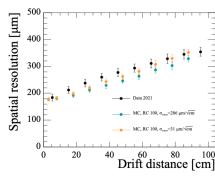
Spatial resolution as a function of RC



• $\sigma \approx$ 600 µm is reached without Gaussian fit and cleaning techniques !

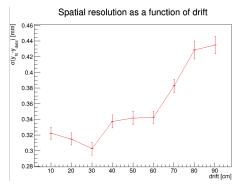
With a Gaussian fit on the data-fit distance histograms

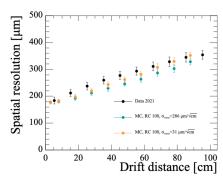

Spatial resolution as a function of RC



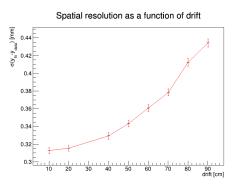
- Spatial resolution is better and reaches $450 \, \mu m$ for $\Delta x = 80 \, cm$
- Even better for lower drifts!

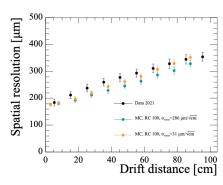
Spatial resolution as a function of drift


• Next idea is to take a fixed RC= 100 ns mm⁻² and study spatial resolution as a function of the drift, to compare with existing plots:



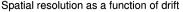
Spatial resolution as a function of drift with "adapted" PRF

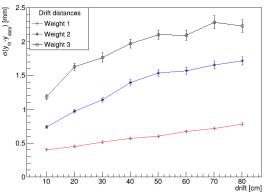

 In order to improve resolution and to have something more comparable, I did again the process but taking each time the "good" parameters of PRF, coming from already existing simulations of horizontal tracks with RC=100 at different drift distances:



Spatial resolution as a function of drift with "adapted" PRF (50 tracks)

 In order to have less statistic error on my graph, I increased the statistic to 50 tracks:





• The behaviour is still not " $\propto \Delta x + C$ " or " $\propto \sqrt{\Delta x} + C$

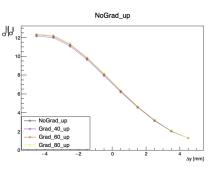
Impact of the drift

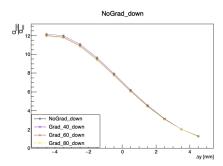
- Study the electrons' distribution before and after the resistive micromegas spreading for different diffusion coefficients in the HA-TPC gas.
- This should allow to artificially increase the drift distance.

Table of Contents

Simulations with the ND280Software

Simulations with Pierre's code

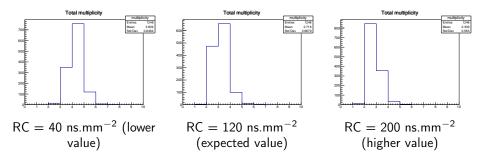

Introduction


- It has been noticed that the RC is not perfectly uniform in a given association of 2 FECs.
- Pierre developed a code to simulate the charge spreading in a card
- I adapted this code in order to simulate horizontal tracks, and put a $\nabla_y(RC)$ in order to quantify the bias due to this gradient on the Q_{main}/Q_{sec} ratio.

The procedure

- Simulate horizontal tracks at different y with:
 - **1** A uniform $RC = 70 \text{ ns mm}^{-2}$
 - ② A $RC(y y_0) = (70 + 8 * (pad_y pad_{y_0})) \text{ ns mm}^{-2}$, i.e. the maximal gradient that was observed
- Study the Q_{main}/Q_{sec} ratio for the different y and compare 1) with 2)

Results obtained



• As shown here, fortunately the bias that could be engendered by this $\nabla_y(RC)$ is negligible

- Backup -

Impact of RC on the multiplicity

 Not surprisingly, we can see that the higher the RC is, the lower charge spreading and multiplicity will be:

