Cross Section Calculation

- > The general cross section formula:
 - C1, C2: T' produce and decay coupling parameters
 - Gamma: total decay width of T'

$$\sigma(C_1, C_2, m_{\rm B}, \Gamma_B) = C_1^2 C_2^2 \tilde{\sigma}_{FW}(m_{\rm B}, \Gamma_B)$$

- ightharpoonup When $\frac{\Gamma_{T'}}{m_{T'}}
 ightarrow 0$ (NWA) the formula can be simplified:
 - C1: coupling corresponding to T' production interaction

$$c_Z^X=rac{e}{2c_ws_w}\kappa_Z^X,\quad c_W^X=rac{e}{\sqrt{2}s_w}\kappa_W^X\quad ext{and}\quad c_H^X=rac{M_B}{v}\kappa_H^X \quad ext{this may not for C1}$$

- $\hat{\sigma}$ (NWA): Check the github tables
- BR(T'->tH): 0.25

$$\sigma(C_1, C_2, m_X, \Gamma_X) = \sigma_P(C_1, m_X) BR_{X \to \text{decay channel}} = C_1^2 \hat{\sigma}_{NWA}(m_X) BR_{X \to \text{decay channel}}$$

NWA Regime

- ightharpoonup Narrow Width Approximation: $\frac{\Gamma_{T'}}{m_{T'}}
 ightarrow \mathbf{0}$
 - Calculate T_T to prove it

$$\Gamma_{T'} = \Gamma_{T'->Ht} + \Gamma_{T'->Zt} + \Gamma_{T'->Wb}$$

$$\begin{split} \Gamma_{X \to Hq}[\kappa_{H^{X_L}}, \kappa_{H^{X_R}}, M_X, m_q] &= 3 * (\kappa_{H^{X_L}}^2 + \kappa_{H^{X_R}}^2) \frac{\lambda(m_q, M_X, M_H)}{96\pi M_X^3} \\ &\qquad \qquad (m_q^2 + M_X^2 - M_H^2 + 4 \frac{\kappa_{H^{X_L}}^2 \kappa_{H^{X_R}}^2}{\kappa_{H^{X_L}}^2 + \kappa_{H^{X_R}}^2} m_q M_X) \\ \Gamma_{X \to Vq}[\kappa_{V^{X_L}}, \kappa_{V^{X_R}}] &= d_V \times \left(\kappa_{V^{X_L}}^2 + \kappa_{V^{X_R}}^2\right) \frac{3e^2}{4s_w^2} \frac{\lambda(m_q, M_X, M_H)}{(96.\pi * M_X^2)} \times \begin{array}{c} \textbf{A typo?} \\ \textbf{Should be } M_V? \\ \\ (m_q^2 + M_X^2 + \frac{m_q^4 - 2m_q^2 M_X^2 + M_X^4}{m_V^2} - 2m_V^2 \\ \\ -12 \frac{\kappa_{V^{X_L}}^2 \kappa_{V^{X_R}}^2}{\kappa_{V^{X_L}}^2 + \kappa_{V^{X_R}}^2} m_q M_X) \\ \\ \end{array}$$

- Doing cross check with TotalWidth_x_coupling_SingleT_NWA.txt
 - For T' singlet, main coupling chirality is L: Can we make κ_V^{TR} =0?

Cross Section Calculation (NWA)

$$\sigma(C_1, C_2, m_X, \Gamma_X) = \sigma_P(C_1, m_X) BR_{X \to \text{decay channel}} = C_1^2 \hat{\sigma}_{NWA}(m_X) BR_{X \to \text{decay channel}}$$

 \triangleright Get σ (NWA) from CrossSections BR SingleT NWA.txt

1	MQ	sigmaHat(Tbj)(p	ob)	QCDscaleUp(%)	QCDscal	eUp(%)	sigmaHat(Tbj)(pb)
2	600	4303.83 26.5	-1 <mark>9.2</mark>	200.13 26.1	-19	0.22127	620349551208	0. <mark>511</mark>
3	650	4096.14 27.3	-19.7	203.148 26.6	-19.3	0.20205	726514449626	0 . 508
4	700	50.9587 27.9	-20	4.21476 27.2	-19.6	0.18196	062965372217	0.506
5	800	34.9723 29.1	-20.7	2.99493 28.1	-20.1	0.15802	2464837853522	0.504
6	900	24.5265 30.3	-21.3	2.16676 29	-20.6	0.13975	345806095826	0.515
7	1000	17.572 31.3	-21.8	1.59232 29.8	-21	0.12532	245640045215	0.508
8	1100	12.7958 32.3	-22.3	1.18243 30.5	-21.4	0.11362	288609745443	0.506
9	1200	9.44201 33.2	-22.7	0.888825	31.3	-21.8	0.1039501077	6979453

which σ should I use?

- ➢ Get C1 from Coupling_x_FixedTotalWidth_SingleT_NWA.txt
 - Obtain κ by fixing Γ_T'/m_T' to 1% or 2%

```
MQ G/MQ=1%(singlet)
600 0.22127620349551208
650 0.20205726514449626
700 0.18196062965372217
```

Is this value C1 or κ ?

 \rightarrow BR(T'->tH) = 0.25