Searches for challenging and long-lived signatures by ATLAS and CMS experiments

Kunihiro Nagano (KEK, Japan)

International Conference on the Physics of the Two Infinities 29/March/2023, Kyoto, Japan

Large Hadron Collider (LHC)

- Proton-proton collider with c.m.s energy → 14 TeV (design)
 -- c.m.s. energy of elementary parton-parton collision: O(1) TeV
 - → The real explorer for "TeV scale" physics, e.g
 - -- Origin of EW symmetry breaking; SM Higgs

$$\sqrt{s}_{eff}(q-q) \approx O(1) \text{ TeV}$$

- -- New physics search
- 2 experiments with general purpose detector, covering $\sim 4\pi$ solid angle: ATLAS and CMS

In this talk, searches for new physics (with experimentally challenging signatures) from ATLAS/CMS will be presented

<u>LHC Runs – in a nutshell</u>

Run-2 (2015-18)

-- $\sqrt{s}=13$ TeV, $\int \mathcal{L}dt \sim 140$ /fb

Excellent data taking efficiency and excellent data quality

- Searches for new physics with these high-quality/statistical data
 - \rightarrow No clear indication yet so far...
 - \rightarrow Might new physics lie in experimentally challenging signatures? ³

Challenging and long-lived particles signatures

arXiv:1810.12602

Detector-Prompt Detector-Stable Long-lived particles (LLP) 105 -- The majority of BSM searches WIZ focus on promptly decayed and/or Particle Mass m [MeV] stable new particle 10^{4} B±/B -- Such new particles with macroscopic lifetime often result 103 in experimentally challenging signatures (see later) 10^{2} 10-23 10-19 10-15 10-11 10-7 10-3 101 105 10 New physics could be hiding here Proper Lifetime 7 [s] Phys. Rev. Lett 121.081801 What else are challenging at LHC? Events / Bin ATLAS For example, small-mass new particles: √s=13 TeV. 29.3 fb⁻¹ $|v^*| < 0.6$ -- Difficult to be triggered on, as the 10 background cross section is way 10 too high 10 * Trigger/DAQ system applies Trigger-level iets usually high energetic signatures ffline jets, single-jet triggers 10 fline jets, single-jet triggers, prescale-corrected to achieve a few/40000 reduction 600 2000 3000 4000 1000 m_" [GeV]

- -- Experimental searches based on signatures
 - * Results can be interpreted in different models

5

-- Specific theories can suggest new signatures to look

Experimental signatures of LLF

Lhi

Ne

Eit

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

SummaryPlotsEXO13TeV

ATL-PHYS-PUB-2022-034

Extensive searches on many LLP signatures are actively on going.

In this talk, several recent results are picked up to show.

Direct detection searches

- Fractionally-charged particles
- Multiply-charged particles
- Large ionization loss (dE/dx) particles

No significant excess of events was observed. Upper limits on FCP mass vs. charge were derived.

derived.

Multiply charged particles

- Target: heavy long-lived multi-charged particles (MCP)
- Signature
 - -- Large ionization signal (dE/dx) in inner-tracking (Pixel/TRT) and muon (MDT) detectors
 - -- Muon-like track in inner-tracking and muon detectors
 - -- Trigger with: single-muon, complemented with E_T^{miss} , delayed-muon triggers * Single-muon trigger only sensitive for $\beta > 0.65$ due to time window

 $\tilde{q}_{(IIP)}$

 $q_{(LL)}$

Split SUSY R-hadron

Large ionization (dE/dx)

- Target: massive, charged, long-lived particles moving slower than speed of light
- Signature
 - -- Large ionization signal (dE/dx) in inner-tracking (Pixel) detector
 - -- $\beta\gamma$ is with Bethe-Bloch formula with the measured dE/dx
 - -- Mass calculated as: $m = \frac{p}{\beta v}$
- Challenges
 - -- Fully data-driven background estimation

* Main backgrounds are due to dE/dx fluctuations

Large ionization (dE/dx) -cont'd-

arXiv:2205.06013

- Results:
 - -- 8 signal regions targeting different LLP masses and lifetimes
 - -- Agreement with SM prediction except one SR (dE/dx > 2.4 MeV/g/cm)

- 3.3σ global significance deviation at m=1.4 TeV
 - -- Cross-check with calorimeter/muon system shows β ~1 for these tracks
- Complementary with other ATLAS LLP searches

Indirect detection searches

- Photons
 - -- Displaced di-photon vertex
- Hadronic jets
 - -- Out-of-time trackless jets
 - -- Displaced vertex with jets
- Leptons
 - -- Muon pairs with small displacements

HOT! Public since this winter (last Nov-)

NEW

Displaced di-photon vertex

- Target: displaced production of H or Z, originated from neutral LLP
- Signature: displaced vertex of two photons that arrive to the calorimeter delayed. Exploring the ATLAS LAr EM calorimeter capability fully:
 - -- Trajectories and vertex reconstruction from EM shower shapes

-- Calorimeter timing $t_{avg} = (t_1 + t_2)/2$

• Limit on GMSB models with the almost degenerate triplet $\widetilde{\chi^{\pm}}, \widetilde{\chi^{0}}$

 $p \qquad \begin{array}{c} x \\ p \\ \tilde{\chi} \\ \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{$

Out-of-time trackless jets

- Target: LLPs decaying in the outer regions of the tracker or within the calorimeter
- Signature: jets that are trackless and out-of-time
- Deep Neural Net (DNN) discriminator, with jet, track, timing information as inputs, was developed
- Results were interpreted using a simplified model of GMSB charginoneutralino production
 - -- Effective pair production of χ_1^0 (due to near mass-degeneracy)

 $\widetilde{\chi}_1^0$

-- Each $\widetilde{\chi_1^0}$ subsequently decay to (H or Z) and \tilde{G}

 10^{2} 10

(qJ) (XX)² (XX)²

10

200

For long-lived χ_1^0 with $c\tau=0.5$ m, masses up to 1.18 TeV were excluded

· Ĝ

15

Η

Displaced vertex with jets

- General search for heavy LLPs decaying into hadrons
 Signature: displaced vertex (large mass, multiple tracks) in multi-jets events
 - -- Displaced vertex can be reconstructed up to 300 mm thanks to the large radius tracking (LRT)
- Backgrounds: accidental track crossing, merged close-by vertices etc.

For long-lived χ_1^0 with τ =0.1 ns, ewkino masses up to 1.58 TeV were excluded independently of the presence of heavier gluino

• Limits derived for benchmark models of EW and Strong production of R-parity violating SUSY

Muon pairs with small displacements

- Target: smuon $(\tilde{\mu})$ with a lifetime of O(1-10)ps, filling a gap between prompt and displaced $\tilde{\mu}$ searches
- Signature: a pair of opposite-charged muons with impact parameters in mm range -- $|d_0| > 0.6 mm$ for signal region

HOT

(Prel. on 23 Mar)

- The observed number of events in all SRs compatible with background-only expectation
- (In addition to the model-independent cross section limit), the model-dependent 2D exclusion limit for GMSB SUSY is derived

Excluded the gap between the previous displaced and prompt searches

Small masses searches

• Small mass di-muon resonance

JHEP04 (2022) 062 Long-lived small-mass di-muon reso ZDJ $H_{\rm D}$ Target: dark photon (Z_D) decaying into di-m 2 -- Also, a scalar resonance in decay of b-ha Zπ Z_{D} Nobel experimental technique : "Data Scout ΗD -- Very high-rate triggers with limited event coment * to ensure affordable bandwidth usage -- Enables to search for di-muon masses > 300 MeV **CMS** Supplementary 101 fb⁻¹ (13 TeV) Events / 0.01 GeV Ixv [cm] 10⁶ Φ .0 - 0.210⁵ - 2.4 Η - 3.1 3.1 - 7.010⁴ 7.0 - 11.010³ 10² and when the second 101 fb⁻¹ (13 TeV) 10¹ Events/0.0022 GeV CMS Data l_w ∈ [3.1,7] cm 10⁰ Background pred. (fit) p_(μμ) < 25 GeV X (2.0 GeV, ct = 1 mm) [× 5] 2 isolated 100 10¹ Dimuon mass [GeV] No significant peak-like structures are observed; upper limits on the branching fraction is set

19

Dimuon mass [GeV]

JHEP04 (2022) 062

Long-lived small-mass di-muon resonance -cont'd-

- The obtained constraints are the most stringent to date for substantial regions of parameter space.
- Competitive with LHCb in higher mass regions.

20

B(

Summary and Run3 prospects

- In the last few years, ATLAS and CMS have produced a large variety of searches for experimentally challenging signals such as long-lived particles
 - -- Various noble and dedicated techniques, calibrations, background handling, trigger, etc. have been invented
- There are still room for further improvements and filling gaps of past searches, and the Run3 has just started since 2022! (already collected ~40 /fb)
 - -- New triggers e.g. for unconventional tracking signatures
 - -- New dedicated reconstruction and analysis methods
 - * For example, large radius tracking (LRT) runs on all events in ATLAS since Run3
 - -- Extension to uncovered signatures

. . . .

