

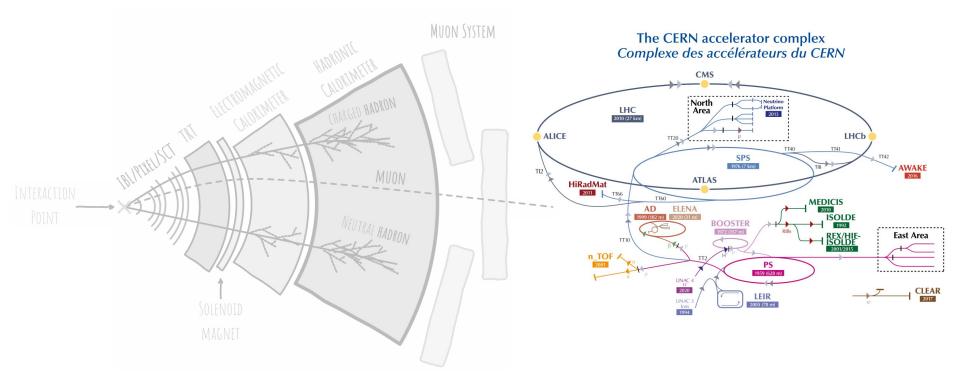
ULB

EXPERIMENT

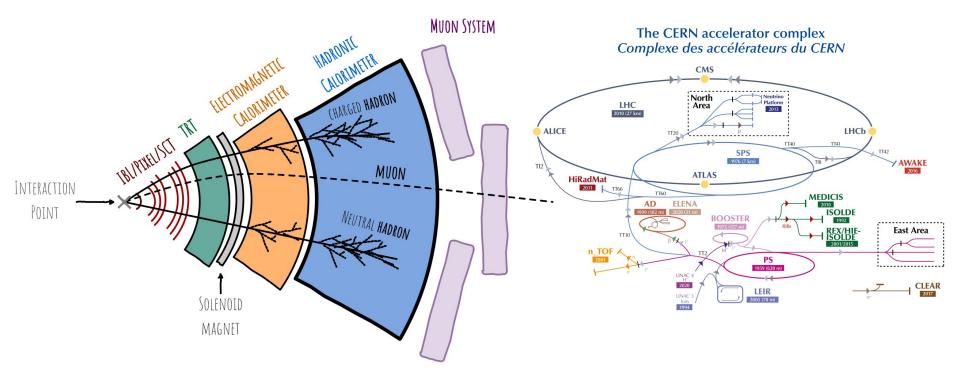
BSM Higgs & Dark Matter Results from ATLAS and CMS

Santiago Paredes Saenz On behalf of the ATLAS and CMS collaborations santiago.paredes@cern.ch

International Conference on the Physics of the Two Infinities March 2023


Overview

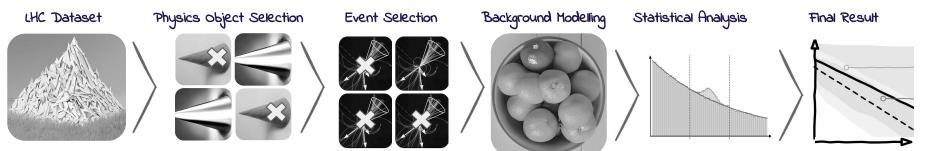
- >>>> New physics searches @ LHC
- Dark Matter and Beyond Standard
 Model Higgs @ LHC
- » Recent results from **ATLAS** and **CMS**
- Summary


DM and BSM Higgs @ LHC how? why?

The LHC & collider detectors

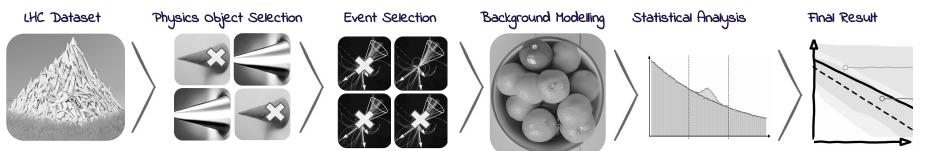
The LHC & collider detectors

• First: acquire and save the data sets



• Next: interpret the data, define strategies, statistical analysis

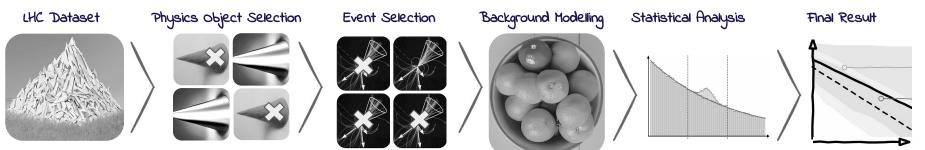
• First: acquire and save the data sets

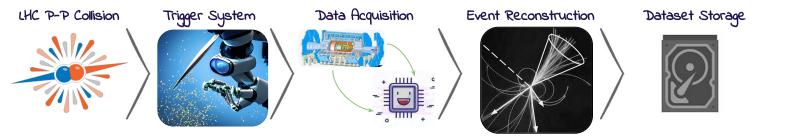


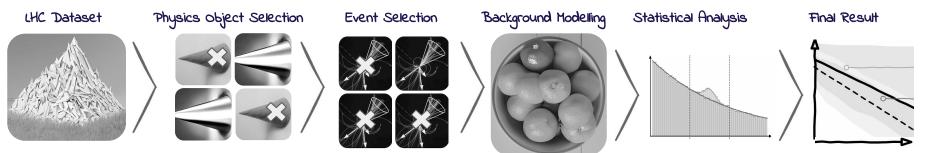


• Next: interpret the data, define strategies, statistical analysis

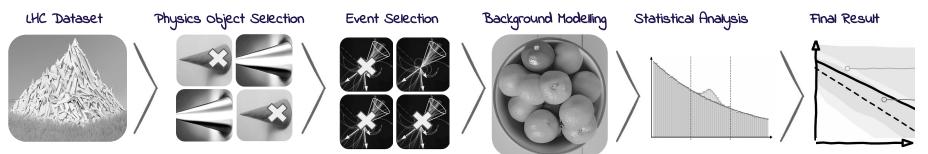
• First: acquire and save the data sets

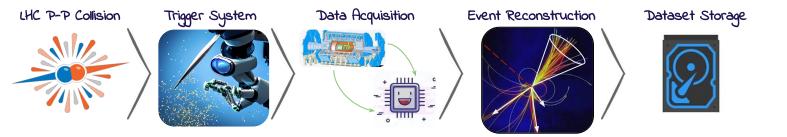


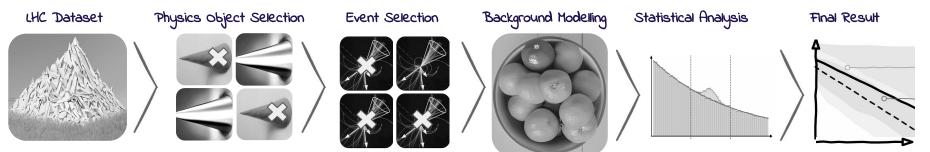


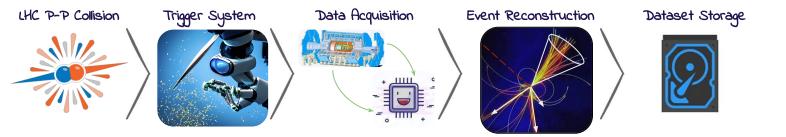

• Next: interpret the data, define strategies, statistical analysis

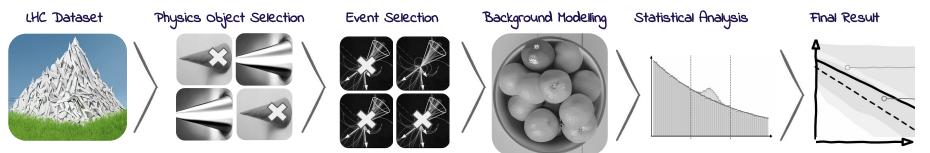
• First: acquire and save the data sets

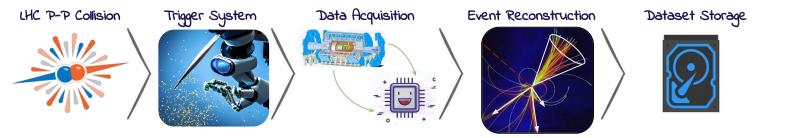

• Next: interpret the data, define strategies, statistical analysis

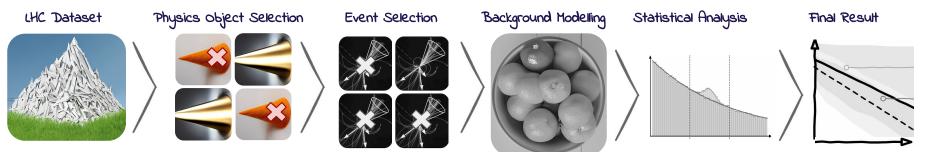

• First: acquire and save the data sets

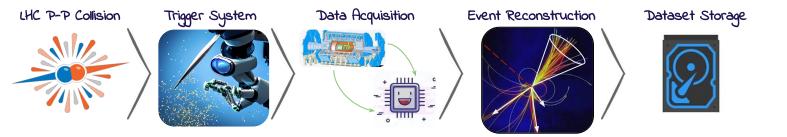

• Next: interpret the data, define strategies, statistical analysis

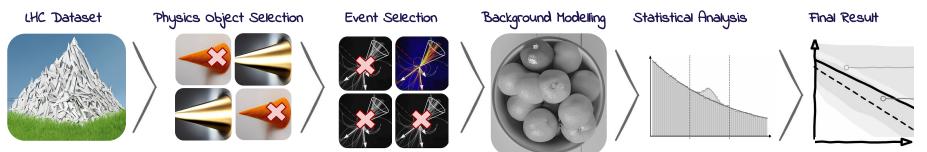

• First: acquire and save the data sets

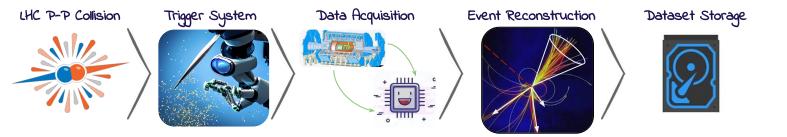

• Next: interpret the data, define strategies, statistical analysis

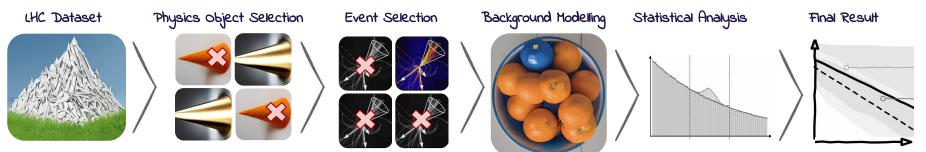

• First: acquire and save the data sets

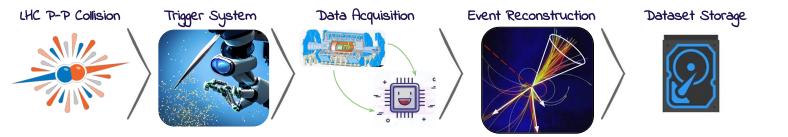

• Next: interpret the data, define strategies, statistical analysis

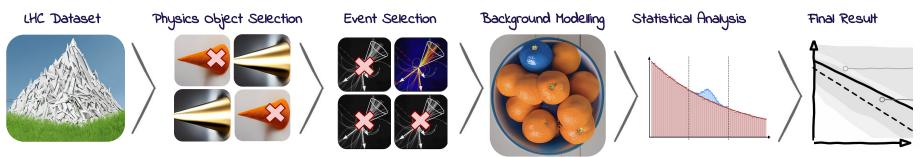

• First: acquire and save the data sets

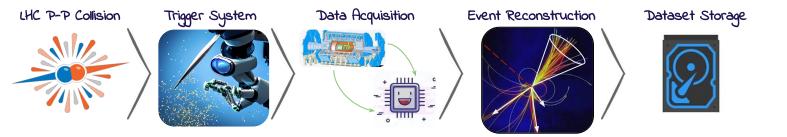

• Next: interpret the data, define strategies, statistical analysis

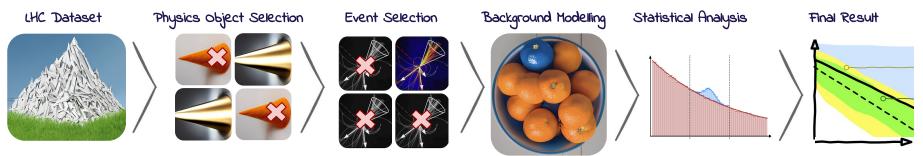

• First: acquire and save the data sets

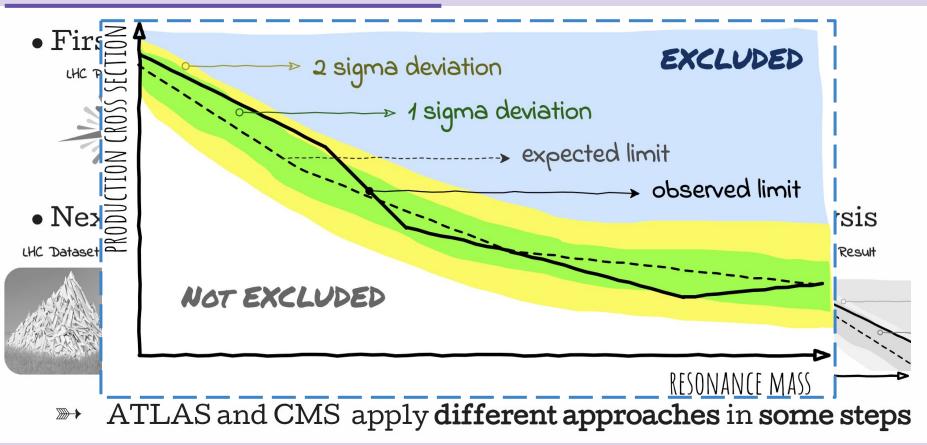

• Next: interpret the data, define strategies, statistical analysis


• First: acquire and save the data sets

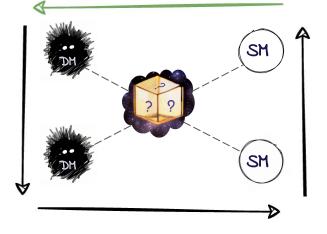

• Next: interpret the data, define strategies, statistical analysis

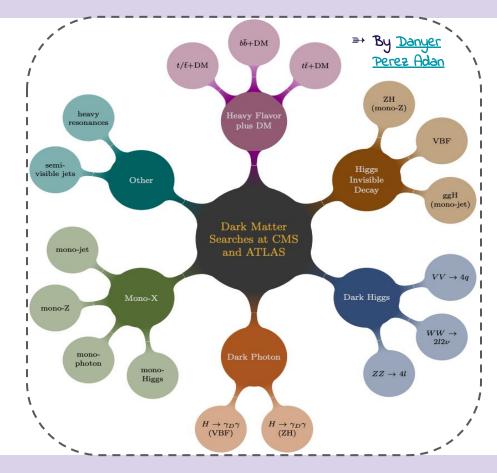

• First: acquire and save the data sets


• Next: interpret the data, define strategies, statistical analysis

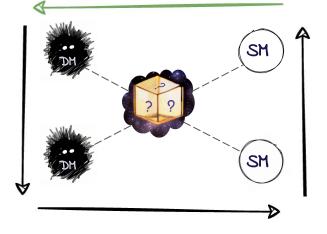


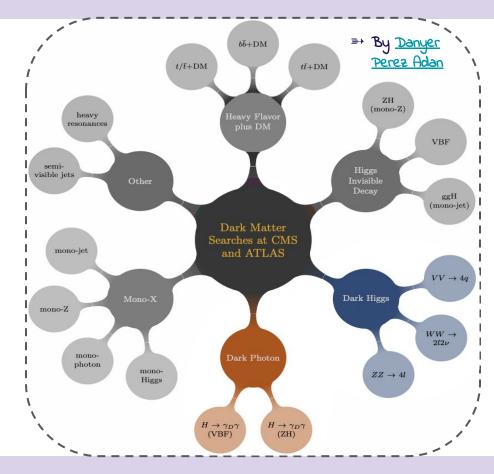
• First: acquire and save the data sets

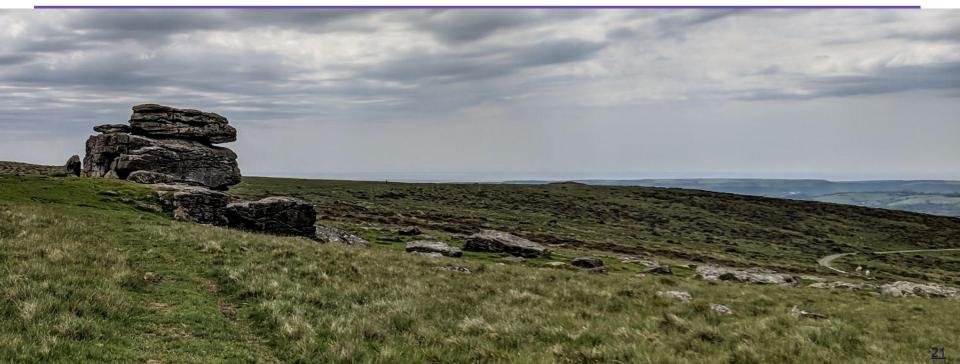

• Next: interpret the data, define strategies, statistical analysis



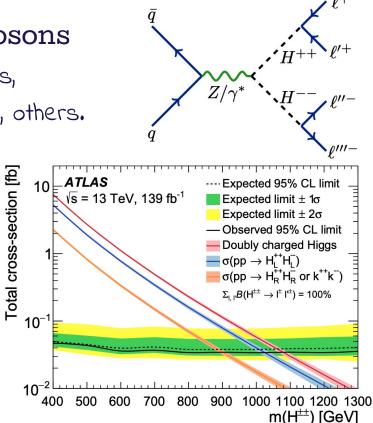
DM searches @ LHC


- Several ways to look for Dark matter
 - ➡ Colliders play an important role!




DM searches @ LHC

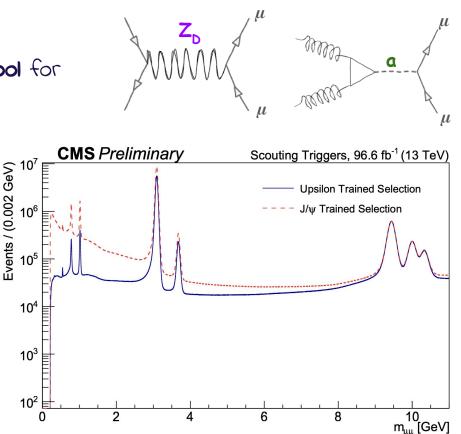
- Several ways to look for Dark matter
 - ➡ Colliders play an important role!



Recent results from ATLAS & CMS

ATLAS H++H-- search

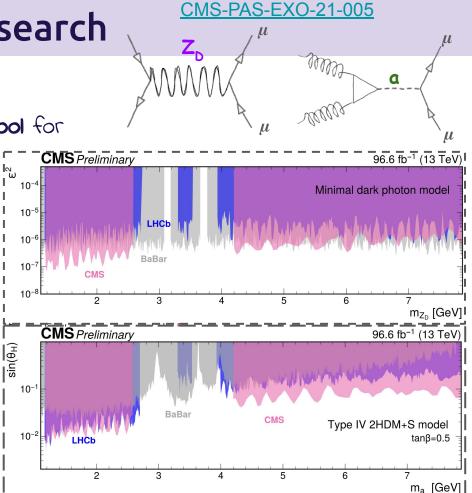
- Search for doubly-charged Higgs bosons
 - Motivated in extended Higgs sector models, *v*-mass models (type-2 seesaw models), others.
 - \rightarrow e/ μ channels
 - » + Same sign lepton pairs
- Strategy
 - Same-sign requirement ⇒ virtually
 background-free analysis!
 W Use invariant mass of same sign pair as discriminant*



S. Paredes Saenz

CMS GeV scale resonance search

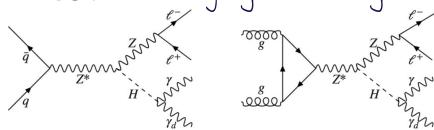
- Low mass resonance → μμ

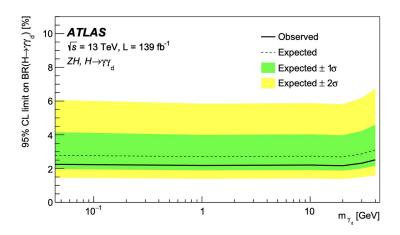

 [™] Resonance searches are a powerful tool for searches for new physics
 [™] Interpretation in dark-photon and
 extended Higgs sector models
 [™]
 ¹⁰⁷
 [™]
 ¹⁰⁷
 [™]
 ¹⁰⁷
 [™]
 [™]
 ¹⁰⁷
 [™]
 [™]
 ¹⁰⁷
 [™]
 [™]
- Strategy
 - Trigger-level "scouting" analysis
 ⇒ Dedicated triggers and
 µ identification for low mass
 ⇒ Search range: around the J/Ψ and Y resonances

CMS GeV scale resonance search

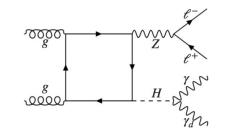
- Low mass resonance → μμ

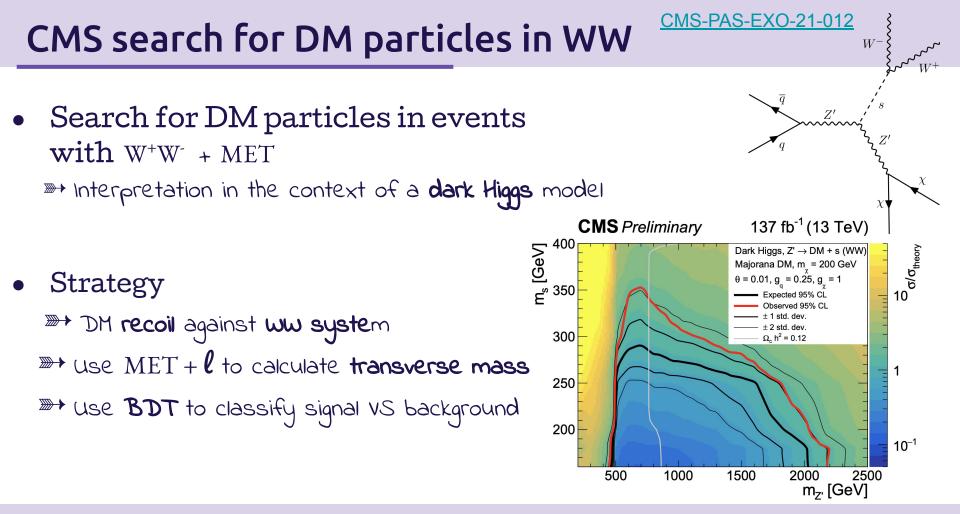
 [™] Resonance searches are a powerful tool for searches for new physics
 [™] Interpretation in dark-photon and
 extended Higgs sector models
- Strategy
 - Trigger-level "scouting" analysis
 ⇒ Dedicated triggers and
 µ identification for low mass
 ⇒ Search range: around the J/Ψ and Υ resonances


ATLAS dark photon search via ZH


- Dark photons search in $H \rightarrow \gamma \gamma_d$
 - Here H is m(H) = 125 GeV
 - \implies γ_d can be massive or massless
- Strategy

 \implies Select events with $Z \rightarrow e^-e^+/\mu^-\mu^+$ and γ


 \implies use MET + γ to calculate **transverse mass**


» Use BDT to classify signal VS background

HDBS-2019-13

Summary

- Showed a select few **new results** from **ATLAS and CMS** on searches for **BSM Higgs** and **Dark Matter**
 - More exciting results on plenary and parallel talks!
- Collider searches for DM are a key piece of the puzzle
 - Higgs boson is a powerful tool for searching for new physics
- Results shown here use datasets from Run 2 of the LHC
 - >>> Stay tuned for results based on the ongoing Run 3!

ULB

Thanks!

Santiago Paredes Saenz On behalf of the ATLAS and CMS collaborations <u>santiago.paredes@cern.ch</u>

International Conference on the Physics of the Two Infinities March 2023

ULB

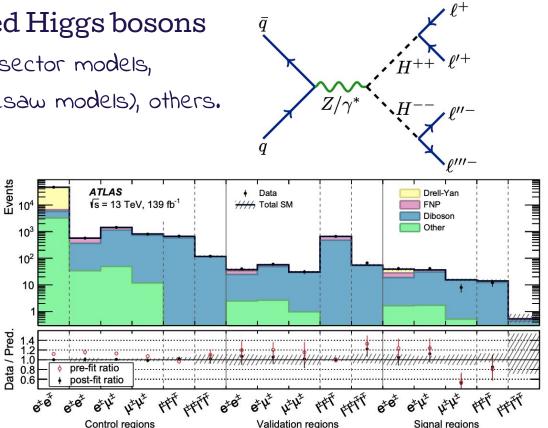
EXPERIMENT

[Backup Slides]

Santiago Paredes Saenz On behalf of the ATLAS and CMS collaborations <u>santiago.paredes@cern.ch</u>

International Conference on the Physics of the Two Infinities March 2023

Conf. Note in CERN Document Server


ATLAS H++H-- search

- Search for doubly-charged Higgs bosons
 - Motivated in extended Higgs sector models, v-mass models (type-2 seesaw models), others.

10³

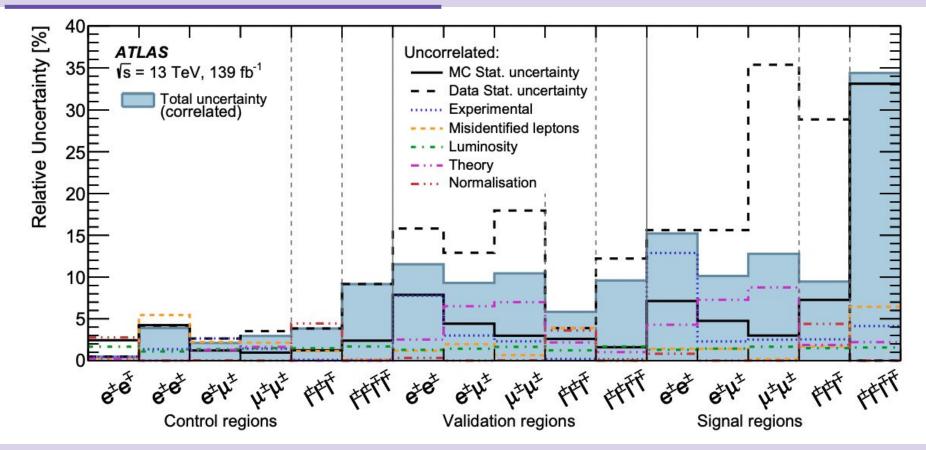
Data /

- \implies e/ μ channels
- Same sign lepton pairs
- Strategy
 - >>> Separate analysis depending on number of leptons reconstructed

	Control regions			Signal regions			Validation regions			
	DYCR	DBCR2L	DBCR3L	CR4L	SR2L	SR3L	SR4L	VR2L	VR3L	VR4L
Channel	e ⁺ e ⁻	$\left \begin{array}{c} e^{\pm}e^{\pm}\\ &e^{\pm}\mu^{\pm}\\ &\mu^{\pm}\mu^{\pm}\end{array}\right.$	$\left \begin{array}{c} \ell^{\pm}\ell^{\pm}\ell^{\mp} \end{array} \right $	$\ell^+\ell^+\ell^-\ell^-$	$e^{\pm}e^{\pm}\ e^{\pm}\mu^{\pm}\ \mu^{\pm}\mu^{\pm}$	$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	$\left \begin{array}{c}\ell^+\ell^+\ell^-\ell^-\\\end{array}\right $	$e^{\pm}e^{\pm}$ $e^{\pm}\mu^{\pm}$ $\mu^{\pm}\mu^{\pm}$	$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	$\ell^+\ell^+\ell^-\ell^-$
Number of leptons	2	2	3	4	2	3	4	2	3	4
$\frac{m(\ell^{\pm},\ell'^{\mp})_{\text{lead}} \text{ [GeV]}}{m(\ell^{\pm},\ell'^{\pm})_{\text{lead}} \text{ [GeV]}}$	≥ 300 -	- [200, 300)	- ≥ 300	- [100, 200)	- ≥ 300	- ≥ 300	- ≥ 300	- ≥ 300	- [100, 300)	- [200, 300)
$p_{\rm T}(\ell^{\pm},\ell'^{\pm})_{\rm lead} [{\rm GeV}]$ $\Delta R(\ell^{\pm},\ell'^{\pm})_{\rm lead}$ $\overline{m} [{\rm GeV}]$ $E_{\rm T}^{\rm miss} [{\rm GeV}]$ $ \eta(\ell,\ell') $		- - > 30 < 3.0	-		≥ 300 < 3.5 - -	≥ 300 - - - -	- - ≥ 300 - -	[200, 300) < 3.5 - > 30 - < 3.0 -		-
Z-veto	-	-	inverted	-	-	1	1	-	1	-


H++H--: Fake and non prompt selection

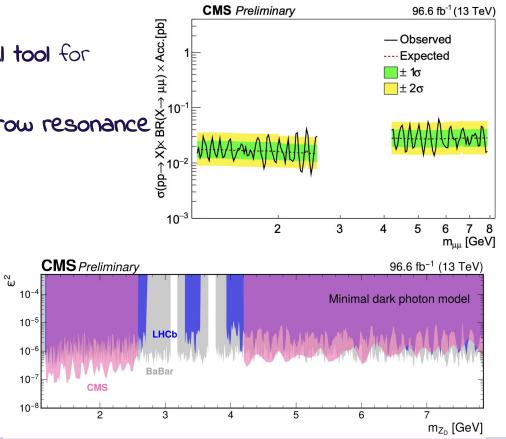
Muon channel	Electron channel		
$p_{\rm T}$ variab	le binning		
b-jet	t veto		
Single-muon trigger	Single-electron trigger		
Exactly one muon	Exactly one electron		
Five η bins, two $E_{\rm T}^{\rm miss}$ bins	Four η bins, two $E_{\rm T}^{\rm miss}$ bins		
$p_{\rm T}({\rm jet}) > 35 {\rm GeV}$			
$\Delta \phi(\mu, \text{jet}) > 2.7$			
$E_{\rm T}^{\rm miss}$ < 40 GeV			


H++H--: Fake and non prompt selection

Muon channel	Electron channel		
$p_{\rm T}$ variab	le binning		
b-jet	t veto		
Single-muon trigger	Single-electron trigger		
Exactly one muon	Exactly one electron		
Five η bins, two $E_{\rm T}^{\rm miss}$ bins	Four η bins, two $E_{\rm T}^{\rm miss}$ bins		
$p_{\rm T}({\rm jet}) > 35 {\rm GeV}$			
$\Delta \phi(\mu, \text{jet}) > 2.7$			
$E_{\rm T}^{\rm miss}$ < 40 GeV			

H++H--: Limits per channel

H++H--: Systematics



Effect	$m_{\mu\mu} < 2.6 \text{ GeV}$	$m_{\mu\mu} > 4.2 { m GeV}$	
Integrated luminosity	2.3–2.5%		
Mass resolution	20%		
Trigger efficiency	1–20%		
Muon ID efficiency	4–9%	12-20%	
Vertex selection	_	3%	
Efficiency application	8%	4%	
D meson normalization TFs	20-25%	—	

PAS in CERN Document Server

CMS GeV scale resonance search

- Strategy
 - Trigger-level "scouting" analysis
 Dedicated triggers and
 µ identification for low mass
 Search range: around the J/Ψ and Υ resonances

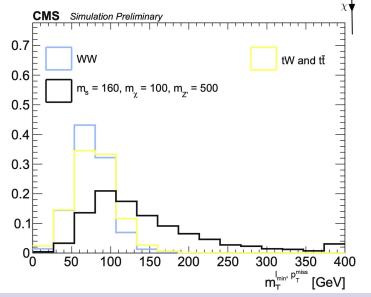
CMS DM search in WW events: preselection, m_{τ}

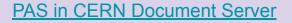
Di-leptonic		Semi-leptonic			
		Quantity	Selection		
Quantity	Selection	Number of leptons	1		
Number of leptons	2	Additional leptons	0		
Lepton flavors	eμ,μe	Number of jets	\geq 2		
Lepton charges	Opposite	Non W-candidate b-tagged jets	0		
Additional leptons	0	m _{jj}	> 65 GeV, < 105 GeV		
$p_{\rm T}^{\ell \max}$	> 25 GeV	p_{T}^{miss}	> 60 GeV		
$p_{\rm T}^{\ell{\rm min}}$	> 20 GeV	$p_{\pi}^{\ell jj}$	$> 60 \mathrm{GeV}$		
$m_{\ell\ell}$	> 12 GeV	$m_{\rm T}^{\ell,p_{\rm T}^{\rm miss}}$	> 80 GeV		
$p_{\mathrm{T}}^{\ell\ell}$	> 30 GeV	$\Delta R_{\ell,ii}$	< 3		
$p_{\rm T}^{\rm miss}$	> 20 GeV	$\Delta \phi_{\ell,\mathrm{ii}}$	< 1.8		
$min(p_{\rm T}^{\rm miss, PF proj}, p_{\rm T}^{\rm miss, track proj})$	> 20 GeV	$\Delta \phi_{\ell j j, p_{\mathrm{T}}^{\mathrm{miss}}}$	> 2		
$m_{\rm T}^{\ell\ell,p_{\rm T}^{\rm miss}}$	$> 50 \mathrm{GeV}$				
$\Delta \hat{R}_{\ell\ell}$	< 2.5	$m_{ m T}^{\ell{ m min},p_{ m T}^{ m miss}} = \sqrt{2p_{ m T}^{\ell{ m min}}p_{ m T}^{ m miss}} \left[1-1 ight]$	$\cos\Delta\phi(\vec{p}_{\rm T}^{\ell{\rm min}},\vec{p}_{\rm T}^{{ m miss}})$,		
Number of b-tagged jets	0				

S. Paredes Saenz

CMS search for DM particles in WW

Search for DM particles in events with W+W- and MET
 Interpretation in the context of a dark Higgs model
 Analysis of full Run 2 data set


a.u


• Strategy

 \implies Select 1 or 2 e/μ (semi/di-leptonic)

 \implies Calculate transverse mass from ℓ and MET

>>> Use BDT to classify signal VS background in semi-leptonic channel

Z'

ATLAS dark photon search in ZH: event selection

Two same flavour, opposite sign, medium ID and loose isolated leptons, with leading $p_T > 27$ GeV, sub-leading $p_T > 20$ GeV

Veto events with additional lepton(s) with loose ID and $p_T > 10 \text{ GeV}$

76 GeV $< m_{\ell\ell} < 116$ GeV

Only one tight ID, tight isolation photon with $E_{\rm T}^{\gamma} > 25 \text{ GeV}$

 $E_{\rm T}^{\rm miss} > 60 \text{ GeV}$ with $\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\ell\ell\gamma}) > 2.4 \text{ rad}$

 $m_{\ell\ell\gamma} > 100 \text{ GeV}$

 $N_{jet} \le 2$, with $p_T^{jet} > 30$ GeV, $|\eta| < 4.5$

Veto events with b-jet(s)

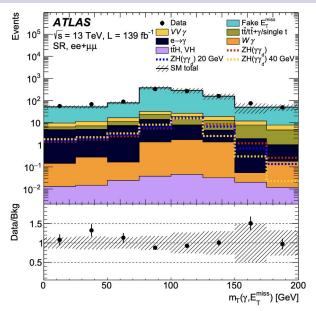
Article in CERN Document Server

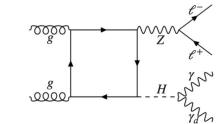
ATLAS dark photon search via ZH

- Dark photons searched in $H \rightarrow \gamma \gamma_d$
 - » Y_d motivated in both particle physics and cosmological models
 - Analysis uses full Run 2 dataset
- Strategy

 \sum_{Z^*}

 \implies Find events with $Z \rightarrow e^-e^+/\mu^-\mu^+$ and γ

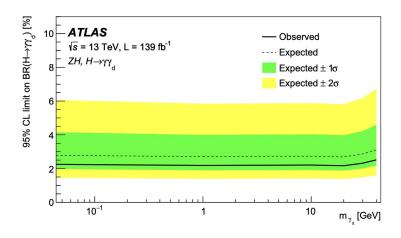

 \implies Calculate transverse mass from γ and MET ~ m_H

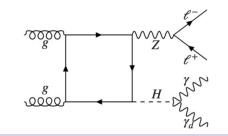

0000

0000

XXXXE Z*

» Use BDT to classify signal VS background




ATLAS dark photon search via ZH

- Dark photons searched in $H \rightarrow \gamma \gamma_d$
 - » γ_d motivated in both particle physics and cosmological models
 - Analysis uses full Run 2 dataset
- Strategy

 \implies Select events with $Z \rightarrow e^-e^+/\mu^-\mu^+$ and γ

- » use MET to calculate transverse mass

