

b-Physics Results by ATLAS and CMS

Jingqing Zhang

Nanjing Normal University & Tsinghua University On behalf of ATLAS & CMS Collaboration

Infinite2023, Kyoto, 2023.03.27-30

$B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$ at ATLAS

• B_c^+ can decay via a weak transition of either heavy quark and a weak annihilation, and provide a unique testing ground for various theoretical models

Figure 1. Feynman diagrams for $B_c^+ \to J/\psi D_s^{(*)+}$ decays: (a) colour-favoured spectator, (b) colour-suppressed spectator, and (c) annihilation topology.

- B_c^+ to $J/\psi D_s^+$ and $J/\psi D_s^{*+}$ decays are observed by LHCb and ATLAS, while weak annihilation contribution is discussed only in a few papers, PRD90(2014)114030, IJMPA33(2018)1850044
- ATLAS improved the precision of the measurements of these two decays, using 139 fb^{-1} data collected at $\sqrt{s} = 13$ TeV

$B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$ at ATLAS

- 2D fit to $m(J/\psi D_s^+)$: $|cos\theta'(\mu^+)|$ is applied to extract signal yields, and transverse polarization fraction in $B_c^+ \rightarrow J/\psi D_s^{*+}$
- Branching fractions are measured relative to $B_c^+ \rightarrow J/\psi \pi^+$

$B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$ at ATLAS

- Precision improved branching fraction ratio measurements
 - Consistent with earlier ATLAS and LHCb measurements
 - Consistent with a QCD relativistic potential model calculation

$$R_{D_{S}^{+}/\pi^{+}} = \frac{B(B_{c}^{+} \to J/\psi D_{s}^{+})}{B(B_{c}^{+} \to J/\psi \pi^{+})} = 2.76 \pm 0.33 \pm 0.29 \pm 0.16 \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 1)}}{\text{ATLAS (Run 1)}}} \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 1)}}{\text{ATLAS (Run 1)}}} R_{D_{S}^{*+}/\pi^{+}} = \frac{B(B_{c}^{+} \to J/\psi D_{s}^{*+})}{B(B_{c}^{+} \to J/\psi \pi^{+})} = 5.33 \pm 0.61 \pm 0.67 \pm 0.32 \overset{\text{OCD PM}}{\underset{\text{CCOM}}{\text{BSW}}} \overset{\text{OCD PM}}{\underset{\text{CCOM}}{\text{BSW}}} \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 1)}}{\text{BSW}}} R_{D_{S}^{*+}/D_{S}^{*}} = \frac{B(B_{c}^{+} \to J/\psi D_{s}^{*+})}{B(B_{c}^{+} \to J/\psi D_{s}^{*+})} = 1.93 \pm 0.24 \pm 0.09 \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 1)}}{\text{BSW}}} \overset{\text{ATLAS (Run 2)}}{\underset{\text{CCOM}}{\text{BSW}}} \overset{\text{ATLAS (Run 2)}}{\underset{\text{CCOM}}{\text{BSW}}} \overset{\text{ATLAS (Run 2)}}{\underset{\text{CCOM}}{\text{BSW}}} \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 2)}}{\text{B}(B_{c}^{+} \to J/\psi D_{s}^{*+})}} = 1.93 \pm 0.24 \pm 0.09 \overset{\text{ATLAS (Run 2)}}{\underset{\text{CCOM}}{\text{BSW}}} \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 1)}}{\text{ATLAS (Run 1)}}} \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 2)}}{\text{ATLAS (Run 1)}}} \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 2)}}{\text{B}(B_{c}^{+} \to J/\psi D_{s}^{*+})}} = 1.93 \pm 0.24 \pm 0.09 \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 1)}}{\text{BSW}}}} \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 1)}}{\text{ATLAS (Run 1)}}} \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 2)}}{\text{ATLAS (Run 1)}}}} = 1.93 \pm 0.24 \pm 0.09 \overset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (Run 1)}}{\underset{\text{ATLAS (Run 2)}}{\underset{\text{ATLAS (R$$

- The fraction of transverse polarization in $B_c^+ \rightarrow J/\psi D_s^{*+}$ decay
 - $\Gamma_{\pm\pm}/\Gamma = 0.70 \pm 0.10 \pm 0.04$ JHEP08(2022)087
 - Agree with 2/3 --- expected from naive spin-counting considerations

First observation of the rare 4μ decay of η at CMS

• The double-Dalitz decay, $\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$, proceeds via internal conversion of two photons into 4 muons

- It can serve as precision test of the SM
- It offers sensitivity to new physics
- It contributes to the hadronic light-by-light component of the muon anomalous magnetic moment a_{μ}

First observation of the rare 4μ decay of η at CMS

- CMS observed the double-Dalitz decay $\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ for the first time, using data collected at $\sqrt{s} = 13$ TeV in 2017 and 2018, with high rate triggers
- The branching fraction is measured relative to $\eta \to \mu^+ \mu^$ and is consistent to SM predication

$$\frac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.9 \pm 0.1 \,(\text{stat}) \pm 0.1 \,(\text{syst})) \times 10^{-3}.$$

Di- J/ψ resonances

- Exotic hadrons which are not in $q\bar{q}$ or qqq configurations are expected in QCD theory
- Many candidates are reported in experiments since the discovery of the X(3872) by Belle
- Exotic hadrons containing four charm are discussed in various theoretical models. A such candidate, the X(6900) is first reported by LHCb in 2020

• ATLAS and CMS collected good data to study Di- J/ψ structures

Di- J/ψ resonances at ATLAS

- ATLAS studied the Di- J/ψ mass spectrum using 139 fb^{-1} data collected in 2015-2018 at $\sqrt{s} = 13$ TeV
- $\Delta R < 0.25$ for signal region, and $\Delta R > 0.25$ for control region
- Single parton scattering (SPS) and double parton scattering (DPS) backgrounds are modeled by MC simulations, and corrected according to data in control region
- Obvious structures in di- J/ψ and $J/\psi\psi(2S)$ mass distributions

Di- J/ψ resonances at ATLAS

- Three interfering BWs for di- J/ψ signal structures
 - The third one consistent with LHCb
 - Significance is 10σ

- Di- J/ψ signal structure + single BW (model A), or single BW (model B) for $J/\psi\psi(2S)$ signals $\frac{3}{8}$ ⁵⁰ ATLAS-CONF-2022-040 ATLAS-CONF-2022-040
 - Model A, 4^{th} BW is evident (3.2 σ)
 - Model B, the signal BW is 4.3σ

	m_3	Γ_3
model A	$7.22 \pm 0.03 \substack{+0.02 \\ -0.03}$	$0.10^{+0.13+0.06}_{-0.07-0.05}$
model B	$6.78 \pm 0.36^{+0.35}_{-0.54}$	$0.39 \pm 0.11^{+0.11}_{-0.07}$

Di- J/ψ resonances at CMS

- CMS studied the di- J/ψ mass using 135 fb^{-1} data collected in 2016-2018 at $\sqrt{s} = 13$ TeV
- Background: NRSPS, NRDPS, a near threshold BW (ad-hoc BKG)
- Non-interference fit
 - BKG + three BWs

	X(6600)	X(6900)	X(7300)
	BW1	BW2	BW3
т	$6552\pm10\pm12$	$6927 \pm 9 \pm 5$	$7287 \pm 19 \pm 5$
Γ	$124\pm29\pm34$	$122\pm22\pm19$	$95\pm46\pm20$
N	474 ± 113	492 ± 75	156 ± 56

- Confirmation of X(6900), 9.4 σ
- Observation of X(6600), 6.5σ
- Evidence of X(7300), 4.1σ
- Data demands better description

Di- J/ψ resonances at CMS

- A possible way to describe the dips is the interference
- Interference fit
 - BKG + three interfering BWs $|r_1 \exp(i\phi_1) BW_1 + BW_2 + r_3 \exp(i\phi_3) BW_3|^2$
 - Describes data well

CMS-PAS-BPH	-21-003 (cern	.ch) X(6600)	X(6900)	X(7300)	CMS Preliminary	135 fb ⁻¹ (13 TeV
		BW1	BW2	BW3	ຼິ 180 J Data	— Fit
Interference	<i>m</i> [MeV]	6638^{+43+16}_{-38-31}	6847^{+44+48}_{-28-20}	7134_{-25-15}^{+48+41}	- S 140 - BW3	— Background -
	Γ [MeV]	$444_{-199-235}^{+226+109}$	$191^{+6\bar{6}+2\bar{5}}_{-49-17}$	97^{+40+29}_{-29-26}		
			_	-		

- Implication of interf. result
 - Same J^{PC}
 - Large mass diff. 200-300 MeV indicates radial excitation

Summary

- ATLAS and CMS have collected large dataset which can be used for b and quarkonium/light hadron study
- Latest results from B_c^+ and η decays are presented
- Resonant structures in the di- J/ψ ($J/\psi\psi(2S)$) mass distribution are studied by ATLAS and CMS, and the X(6900) are confirmed by ATLAS and CMS

Thanks for your attention