Recent Belle II results related to flavor anomalies

Kazuki Kojima（Nagoya University） on behalf of the Belle II collaboration

International Conference on the Physics of the Two Infinities
Mar．29th， 2023

Anomalies in $b \rightarrow c$ Decays

A fundamental axiom of the Standard Model (SM) is the universality of the lepton coupling, $g_{\ell}(\ell=e, \mu, \tau)$, to the electroweak gauge bosons.

1. $R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)},(\ell=e$ or $\mu)$

The tension with SM could be a sign of New Physics.

Measurements of $\mathcal{B}\left(\bar{B} \rightarrow X \tau^{-} \bar{\nu}_{\tau}\right)$ are completely saturated by $\mathcal{B}\left(\bar{B} \rightarrow D \tau^{-} \bar{v}_{\tau}+D^{*} \tau^{-} \bar{v}_{\tau}\right)$ unlike $\mathcal{B}\left(\bar{B} \rightarrow X \ell^{-} \bar{v}_{\ell}\right)$.

Light-Lepton Universality Tests in $b \rightarrow c$ Decays

New Physics in $R\left(D^{(*)}\right)$ and $R(X)$ could induce a violation of the lepton flavor universality in the following observables for the light-lepton side of e and μ.

1. $R\left(X_{e / \mu}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow X e^{-} \bar{v}_{e}\right)}{\mathcal{B}\left(\bar{B} \rightarrow X \mu^{-} \bar{v}_{\mu}\right)}$
2. Angular asymmetries in $\bar{B} \rightarrow D^{*} \ell^{-} \bar{v}_{\ell}$:

$$
\Delta_{\mathcal{C}} \mathcal{A}_{x}(w)=\mathcal{A}_{x}^{e}(w)-\mathcal{A}_{x}^{\mu}(w)
$$

Angular observable

$$
\begin{gathered}
\mathcal{A}_{x}(w)=\left(\frac{d \Gamma}{d w}\right)^{-1}\left[\int_{0}^{1}-\int_{-1}^{0}\right] d x \frac{d^{2} \Gamma}{d w d x} \\
w \equiv \frac{m_{B}^{2}+m_{D}^{2}-\left(p_{B}-p_{D^{*}}\right)^{2}}{2 m_{B} m_{D^{*}}}: \text { recoil parameter }
\end{gathered}
$$

$$
R\left(X_{e / \mu}\right) \text { and } \mathcal{A}_{x}(w) \text { can provide }
$$

theoretically and experimentally clean probes of light-lepton universality.
Major cancellation of theoretical and experimental uncertainties

The SuperKEKB/Belle II Experiment

Electron-positron collider experiment at a center of mass energy of the $\Upsilon(4 S)$ or around.
The world's highest instantaneous luminosity:

$$
4.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

(KEKB record: $2.1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

The SuperKEKB/Belle II Experiment

Electron-positron collider experiment at a center of mass energy of the $\Upsilon(4 S)$ or around.
The world's highest instantaneous luminosity:

$$
4.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

(KEKB record: $2.1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

Belle II measured light-lepton universalities at $189 \mathrm{fb}^{-1}$

The Belle II Detector

Substantially upgraded from the Belle detector

 except for calorimeter crystal and superconducting magnetEquivalent or improved performances under higher beam background and event rate conditions. e.g. vertex resolution, K_{S}^{0} reconstruction, K / π identification, trigger system, \ldots

The Belle II Detector: Event Display

Belle II Simulation

View perpendicular to the beam axis

The Belle II Detector: Event Display

Belle II Simulation

Reconstruction

B mesons are generated in pairs from a $\Upsilon(4 S)$ ($b \bar{b}$ resonance) decay.

Reconstruction: B Tagging

B mesons are generated in pairs from a $\Upsilon(4 S)$ ($b \bar{b}$ resonance) decay.
One B meson from $\Upsilon(4 S)$ decay is fully reconstructed with hadronic decays to tag $B \bar{B}$ events.

Reconstruction: Signal B Reconstruction

B mesons are generated in pairs from a $\Upsilon(4 S)$ ($b \bar{b}$ resonance) decay.
One B meson from $\Upsilon(4 S)$ decay is fully reconstructed with hadronic decays to tag $B \bar{B}$ events. The signal semi-leptonic B decays are reconstructed via inclusive or exclusive modes.

1. Inclusive signal B modes

Reconstruct other particles than a lepton inclusively as X.
2. Exclusive signal B modes

Reconstruct all B daughters through specific decay channels.

Light-Lepton Universality Test: $R\left(X_{e / \mu}\right)$ Measurement

We tested light-lepton universality by $R\left(X_{e / \mu}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow X e^{-} \bar{v}_{e}\right)}{\mathcal{B}\left(\bar{B} \rightarrow X \mu^{-} \bar{v}_{\mu}\right)}$ of the inclusive $\frac{\text { arXiv:2301.08266 }}{\text { signal } B \text { modes. }}$
The signal yields are extracted through a binned maximum-likelihood simultaneous fit to lepton momentum of the signal B rest frame, p_{ℓ}^{B}, among the signal $\left(B^{0} \bar{B}^{0} / B^{+} B^{-}\right)$and control $\left(B^{0} B^{0} / B^{+} B^{+}\right)$channels.

Background from $q \bar{q}$ events (continuum background)

$B \bar{B}$

Background from $B \bar{B}$ events

Background from $B \bar{B}$ events are constrained using the background-enriched control sample through the simultaneous fit.

Light-Lepton Universality Test: $R\left(X_{e / \mu}\right)$ Measurement

We tested light-lepton universality by $R\left(X_{e / \mu}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow X e^{-} \bar{v}_{e}\right)}{\mathcal{B}\left(\bar{B} \rightarrow X \mu^{-} \bar{v}_{\mu}\right)}$ of the inclusive $\frac{\text { arXiv:2301.08266 }}{\text { signal } B \text { modes. }}$

$$
R\left(X_{e / \mu}\right)=1.033 \pm 0.010 \text { (stat) } \pm 0.019 \text { (syst) }
$$

First $e-\mu$ universality test using inclusive semi-leptonic B decays
The most precise test of branching-fraction based $e-\mu$ universality of semi-leptonic B decays
Consistent with $\mathrm{SM} R\left(X_{e / \mu}\right)_{\mathrm{SM}}{ }^{[1]}$ by 1.2σ and the exclusive Belle $R\left(D^{*} e / \mu\right)^{[2],[3]]}$.

Light-Lepton Universality Test: Angular Asymmetry

We tested lepton universality by comparing five angular asymmetries of e and μ, $\Delta \mathcal{A}_{x}(w)=\mathcal{A}_{x}^{\mu}(w)-\mathcal{A}_{x}^{e}(w)$ using $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{v}_{\ell}$ decays.

Angular observable

$$
\begin{aligned}
& \mathcal{A}_{x}(w)=\left(\frac{d \Gamma}{d w}\right)^{-1}\left[\int_{0}^{1}-\int_{-1}^{0}\right] d x \frac{d^{2} \Gamma}{d w d x} \\
& w \equiv \frac{m_{B}^{2}+m_{D}^{2}-\left(p_{B}-p_{D^{*}}\right)^{2}}{2 m_{B} m_{D^{*}}}: \text { recoil parameter }
\end{aligned}
$$

The simultaneous determination of all asymmetries in different w ranges is performed.

Light-Lepton Universality Test: Angular Asymmetry $N_{\varepsilon_{w}}$

We tested lepton universality by comparing five angular asymmetries of e and μ, $\Delta \mathcal{A}_{x}(w)=\mathcal{A}_{x}^{\mu}(w)-\mathcal{A}_{x}^{e}(w)$ using exclusive $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{v}_{\ell}$ decays.
The signal yields are extracted through a binned maximum-likelihood fit to $M_{\text {miss }}^{2}$ distributions.

First $e-\mu$ universality test of differential angular observables in w No evidence of lepton universality violation with at least a p-value of 0.12

Summary

The test of lepton universality violation attracts attention by deviations of experimental results from the Standard Model by $>3 \sigma$ in $b \rightarrow c$ transitions. New Physics could contribute to the lepton universality violations.

The Belle II performed two light-lepton universality tests.

$$
\begin{aligned}
& \text { 1. } R\left(X_{e / \mu}\right)=1.033 \pm 0.010 \text { (stat) } \pm 0.019 \text { (syst) } \\
& \text { 2. } \Delta A_{\mathrm{FB}}(w), \Delta S_{3}(w), \Delta S_{5}(w), \Delta S_{7}(w), \Delta S_{9}(w)
\end{aligned}
$$

Both tests are world-leading/first results and are consistent with the SM expectation.

Long-Term Prospects for $\tau-\ell$ Universality Tests

Lepton universality tests including τ leptons by measurements of $R(X)=\frac{\mathcal{B}\left(\bar{B} \rightarrow X \tau^{-} \bar{v}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow X \ell^{-}{ }_{\nu}\right)}$ and $R\left(D^{*}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \tau^{-} \bar{v}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \ell^{-} \bar{v}_{\ell}\right)}$ with Belle II data are in progress.

The SuperKEKB/Belle II will resume operation in the winter of 2023.
Belle II will achieve $\mathcal{O}\left(10^{-2}\right)$ sensitivities at 1-5 ab^{-1} for

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \tau^{-} \bar{v}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \ell^{-} \bar{v}_{\ell}\right)} \text { and } R(X)=\frac{\mathcal{B}\left(\bar{B} \rightarrow X \tau^{-} \bar{v}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow X \ell^{-} \bar{v}_{\ell}\right)}
$$

Appendix

Systematic Uncertainties on $R\left(X_{e / \mu}\right)$

Table I: Statistical and systematic uncertainties on the value of $R\left(X_{e / \mu}\right)$ from the most significant sources.

Source	Uncertainty [\%]
Sample size	1.0
Lepton identification	1.9
$X_{c} \ell \nu$ branching fractions	0.1
$X_{c} \ell \nu$ form factors	0.2
Total	2.2

The modeling of charmed D meson decays by varying the branching ratio of each decay $D \rightarrow K^{+}$anything within its uncertainty while fixing the total event normalization. The effect is negligible.

χ^{2} Tests of Angular Asymmetries

In the full w region, $w_{\text {incl }}$:

Angular observables	$\chi^{2} / N_{\text {dof }}$	p-value
\mathcal{A}	$15.0 / 10$	0.13
$\Delta A_{\mathrm{FB}}(w), \Delta S_{3}(w), \Delta S_{5}(w)$	$2.1 / 3$	0.56
$\Delta S_{7}(w), \Delta S_{9}(w)$	$0.6 / 2$	0.32

In the sub-w region, $w_{\text {high }} \& w_{\text {low }}$:

Angular observables	$\chi^{2} / N_{\text {dof }}$	p-value
\mathcal{A}	$27.7 / 20$	0.12
$\Delta A_{\mathrm{FB}}(w), \Delta S_{3}(w), \Delta S_{5}(w)$	$10.2 / 6$	0.12
$\Delta S_{7}(w), \Delta S_{9}(w)$	$1.1 / 4$	0.89

Uncertainties on Angular Asymmetries

The systematic uncertainties are dominated by the sample size of MC statistics.

Obs.	w bin	Total	Stat.	MC stat.	LID	$\pi_{\text {slow }}$						
$A_{\text {FB }}^{e}$	$w_{\text {low }}$	0.047	0.044	0.015	0.004	0.001						
	$w_{\text {high }}$	0.052	0.049	0.017	0.004	0.001						
	$w_{\text {incl }}$.	0.034	0.032	0.011	0.004	0.001						
$A_{\text {FB }}^{\mu}$	$w_{\text {low }}$	0.043	0.041	0.013	0.001	0.001						
	$w_{\text {high }}$	0.050	0.047	0.016	0.002	0.001						
	$w_{\text {incl }}$.	0.032	0.030	0.010	0.001	0.001						
$\Delta A_{\text {FB }}$	$w_{\text {low }}$	0.064	0.060	0.020	0.004	0.001						
	$w_{\text {high }}$	0.072	0.067	0.024	0.004	0.001						
	$w_{\text {incl }}$.	0.046	0.044	0.015	0.004	0.001						
S_{3}^{e}	$w_{\text {low }}$	0.053	0.050	0.018	0.000	0.001	S_{7}^{e}	$w_{\text {low }}$	0.052	0.049	0.018	0.0010 .000
	$w_{\text {high }}$	0.051	0.048	0.018	0.000	0.000		$w_{\text {high }}$	0.049	0.046	0.017	0.0000 .000
	$w_{\text {incl }}$.	0.036	0.034	0.012	0.000	0.000		$w_{\text {incl }}$.	0.034	0.032	0.012	0.0000 .000
S_{3}^{μ}	$w_{\text {low }}$	0.048	0.045	0.016	0.001	0.000	S_{7}^{μ}	$w_{\text {low }}$	0.047	0.044	0.015	0.0000 .000
	$w_{\text {high }}$	0.050	0.047	0.016	0.000	0.000		$w_{\text {high }}$	0.047	0.045	0.015	0.0000 .000
	$w_{\text {incl }}$.	0.034	0.032	0.011	0.001	0.000		$w_{\text {incl }}$.	0.032	0.031	0.011	0.0000 .000
ΔS_{3}	$w_{\text {low }}$	0.071	0.067	0.024	0.001	0.000	ΔS_{7}	$w_{\text {low }}$	0.070	0.066	0.023	0.0010 .001
	$w_{\text {high }}$	0.072	0.067	0.025	0.001	0.000		$w_{\text {high }}$	0.068	0.064	0.022	0.0000 .000
	$w_{\text {incl }}$.	0.049	0.046	0.017	0.001	0.000		$w_{\text {incl }}$.	0.047	0.044	0.016	0.0000 .000
S_{5}^{e}	$w_{\text {low }}$	0.053	0.050	0.018	0.001	0.000	S_{9}^{e}	$w_{\text {low }}$	0.052	0.048	0.018	0.0000 .000
	$w_{\text {high }}$	0.051	0.048	0.017	0.001	0.000		$w_{\text {high }}$	0.051	0.048	0.018	0.0000 .000
	$w_{\text {incl }}$.	0.036	0.034	0.012	0.001	0.000		$w_{\text {incl }}$.	0.036	0.034	0.012	0.0000 .000
S_{5}^{μ}	$w_{\text {low }}$	0.048	0.045	0.016	0.001	0.000	S_{9}^{μ}	$w_{\text {low }}$	0.047	0.044	0.016	0.0000 .000
	$w_{\text {high }}$	0.049	0.046	0.016	0.000	0.000		$w_{\text {high }}$	0.049	0.047	0.016	0.0000 .001
	$w_{\text {incl }}$.	0.034	0.032	0.011	0.000	0.000		$w_{\text {incl }}$.	0.033	0.032	0.011	0.0000 .000
ΔS_{5}	$w_{\text {low }}$	0.072	0.068	0.024	0.001	0.000	ΔS_{9}	$w_{\text {low }}$	0.070	0.065	0.024	0.0000 .000
	$w_{\text {high }}$	0.070	0.066	0.023	0.001	0.000		$w_{\text {high }}$	0.071	0.067	0.024	0.0010 .001
	$w_{\text {incl }}$.	0.049	0.046	0.016	0.001	0.000		$w_{\text {incl }}$.	0.049	0.046	0.017	0.0000 .000

Search for $B^{+} \rightarrow K^{+} v \bar{v}$ with an Inclusive Tagging Method

$b \rightarrow s v \bar{v}$ offers a complementary probe of new physics in $b \rightarrow s \ell \ell$.
$b \rightarrow s v \bar{v}$ decays are not observed yet.

$$
\begin{array}{cl}
\text { Upper limit }^{[1]} & \mathcal{B}\left(B^{+} \rightarrow K^{+} v \bar{v}\right)<1.6 \times 10^{-5} \\
\mathrm{SM}^{[2]} & \mathcal{B}\left(B^{+} \rightarrow K^{+} v \bar{v}\right)=(5.67 \pm 0.38) \times 10^{-6} \\
\hline
\end{array}
$$

Belle II performed the search for $B^{+} \rightarrow K^{+} \nu \bar{v}$ with an inclusive tagging method for the first time.

Phys. Rev. Lett. 127, 181802 (2021)

Train two BDTs in cascade to suppress backgrounds using event shape and rest-of-event information.
$\mathrm{BDT}_{1} \ldots$ Discriminate signals mainly by topological features $\mathrm{BDT}_{2} \ldots$ Improve purity of signals in events with $\mathrm{BDT}_{1}>0.9$ $\rightarrow 35 \%$ increase at 4% signal efficiency
$B^{+} \rightarrow K^{+} J / \psi \rightarrow K \mu^{+} \mu^{-}$: Signal-like events (with dimuon mask)
$B^{+} \rightarrow K^{+} J / \psi \rightarrow K \mu^{+} \mu^{-}$: Background-like events

Search for $B^{+} \rightarrow K^{+} v \bar{v}$ with an Inclusive Tagging Method

Observed branching fraction:

$$
\mathcal{B}\left(B^{+} \rightarrow K^{+} v \bar{v}\right)=\left(1.9_{-1.3}^{+1.3} \underset{\text { stat }}{ }{ }_{-0.7}^{+0.8} \text { syst }\right) \times 10^{-5}
$$

Observed (expected) upper limit on the branching fraction:

$$
\mathcal{B}\left(B^{+} \rightarrow K^{+} v \bar{v}\right)<4.1(2.3) \times 10^{-5}(90 \% \mathrm{CL})
$$

Competitive as a new method!
20% and 350% improvement from the semi-leptonic and hadronic tagging methods

$$
\text { at } 711 \mathrm{fb}^{-1} \text {, respectively }
$$

