Recent results and future prospects from the T2K experiment

Tatsuya Kikawa (Kyoto University) for the T2K collaboration International Conference on the Physics of the Two Infinities March 29, 2023 @ Kyoto

Neutrino oscillation

- Flavor of neutrino (v_e, v_μ, v_τ) changes periodically as it propagates.
- Described by mixing angles θ_{12} , θ_{13} , θ_{23} , mass squared differences Δm_{21}^2 , Δm_{32}^2 , and CP phase δ_{CP} .

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 - \sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta_{CP}} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

Flavor eigenstates Pontecorvo-Maki-Nakagawa-Sakata matrix eigenstates

- Remaining questions.
 - Is $\sin \delta_{CP}$ non-zero? (CP violation in lepton?)
 - Is θ_{23} 45°? (maximal mixing? octant?)
 - Normal hierarchy $(m_3 > m_2 > m_1)$ or inverted hierarchy $(m_2 > m_1 > m_3)$? lacksquare

 m^2

 $\Delta m_{\rm sol}^2$

 $\Delta m_{\rm atm}^2$

The T2K experiment

- Long-baseline neutrino oscillation experiment in Japan.
- Produce v_{μ} or \overline{v}_{μ} beam at J-PARC.
- Measure the neutrinos at near detector and Super-Kamiokande away from 295km.

Neutrino beam

- 30 GeV proton beam from J-PARC accelerators on graphite target produces pions.
- Magnetic horns focus π^+ or π^- to produce ν_{μ} or $\overline{\nu}_{\mu}$ beam.
- Off-axis method to produce narrowband neutrino beam and maximize oscillation.

J-PARC accelerators

Target and magnetic horns

Near detector

- INGRID (on-axis detector)
 - 14 identical detectors arranged in a cross shape.
 - Monitor beam direction and neutrino event rate.
- ND280 (2.5° off-axis detector)
 - Magnetized (0.2T) complex detector. (Scintillator tracker, TPC, EM calorimeter etc.)
 - Measure neutrino flux to Super-K and cross section.
- WAGASCI-BabyMIND (1.5° off-axis detector)
 - New detector installed in 2019.
 - Located at different off-axis angle from ND280 to measure cross section for higher-energy neutrinos.

Super-Kamiokande

50kt water Cherenkov detector having ~11,000 20 inch PMTs.

 v_{μ} candidate event

- Good separation of electrons and muons. \rightarrow Separate v_e and v_{μ} CC interactions.
- Gd loaded for enhanced neutron detection in 2020.

 v_e candidate event (fuzzy Cherenkov ring)

Oscillations in T2K

• ν_{μ} or $\overline{\nu}_{\mu}$ disappearance

- Sensitive to $\sin^2 2\theta_{23}$. But hard to distinguish octant ($\theta_{23} < 45^\circ$ or $\theta_{23} > 45^\circ$).
- Sensitive to $|\Delta m_{32}^2|$. But does not depend on mass hierarchy $(m_3 > m_2 > m_1 \text{ or } m_2 > m_1 > m_3)$.
- $\nu_{\mu} \rightarrow \nu_{e} \text{ or } \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance
 - Sensitive to sin²2θ₁₃ and sin²θ₂₃.
 Can distinguish octant.
 - Dependent on δ_{CP} . Can search for CP violation.
 - Affected by matter effect.
 Sensitive to mass hierarchy.

Data acquisition

- Accumulated 3.82×10²¹ POT (Proton on Target)
 - ν mode: 2.17×10²¹ POT (56.8%)
 - $\bar{\nu}$ mode: I.65×I0²¹ POT (43.2%)
- Achieved ~515 kW stable beam operation. (522.6kW at maximum)
- Data until 2020 (3.64×10²¹ POT) was analyzed.

Total Accumulated POT for Physics

v-Mode Beam Power \overline{v} -Mode Beam Power

v-Mode Accumulated POT for Physics \overline{v} -Mode Accumulated POT for Physics

Analysis strategy and improvements in 2022

- Significant analysis improvements in 2022.
 - Neutrino flux prediction
 - Neutrino interaction model
 - Near detector analysis
 - Far detector analysis
- Highlight these improvements.

Flow of frequentist oscillation analysis

Neutrino flux prediction

- Simulation with hadron production tuning based on measurements by NA61/SHINE.
- Improved by higher-statics NA61/SHINE data including kaons from T2K replica target.

10

Updated horn cooling water model. Total new analysis --- Previous analysis SK: Neutrino Mode, v_{μ} SK: Neutrino Mode, v_e Fractional Error Fractional Error $\Phi \times E_{\nu}$, Arb. Norm. Hadron Interactions $\Phi \times E_{v}$, Arb. Norm. Hadron Interactions 0.3 0.3---- Material Modeling Material Modeling Proton Beam Profile & Off-axis Angle Proton Beam Profile & Off-axis Angle Number of Protons Number of Protons Horn Current & Field Horn Current & Field — 21bv1 - 21bv1 Horn & Target Alignment - - - 13av7.1 Horn & Target Alignment - - - 13av7.1 0.2 0.2 Replica K[±] Cooling Replica K[±] Replica π[±] water (more stats w/'10) 0.1 0.1 10^{-1} 10 10^{-1} 10 E_{ν} (GeV) E_{v} (GeV)

Neutrino interaction model

- Charged-current quasi-elastic
 - Based on spectral function tuned to electron scattering data.
 - New uncertainties on nuclear shell structure, nuclear potential and Pauli Blocking.
 - Nucleon removal energy has a parameterized dependence on momentum transfer.
- Charged-current resonant pion production
 - Based on Rein-Sehgal model with RFG nuclear model.
 - New tuning with bubble chamber data.
 - Effective inclusion of binding energy.
 - New uncertainty for resonance decay.

Charged-current quasi-elastic

Charged-current resonant pion production

Near detector analysis

- Select v_{μ} or \overline{v}_{μ} CC interactions and separate by target and observed particles.
- Fitting gives tuned nominal values and constrained uncertainties for flux and interaction.

Sample separation by proton

Sample separation by photon tagging

Changed sample separation.

- Split CC0π sample based on proton.
- Separate events with tagged photons. J

Systematic error for Super-K events

Pre-ND

Post-ND

T2K Run1-10,

2022 Preliminary

Far detector analysis

- 6 samples at Super-K for $\nu_{\mu} / \overline{\nu}_{\mu}$ disappearance and $\nu_{\mu} \rightarrow \nu_{e} / \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance.
- Multi-ring sample added for the first time.

6 samples at Super-Kamiokande

Multi-ring sample event at Super-K

13

1000

Times (ns)

Results for atmospheric mixing parameters

- Best fit in upper octant ($\sin^2 \theta_{23} > 0.5$).
- But still compatible with both octants.
- World-leading measurements.

Results for CP violation search

- Large region of δ_{CP} excluded at 3σ .
- CP conservation (sin $\delta_{CP} = 0$) excluded at 90%.
- Weekly prefer normal hierarchy.
- Jarlskog invariant result depends on prior δ_{CP} and $\sin^2\theta_{23}$

Future prospect

- Recorded beam data with Gd-loaded Super-Kamiokande, but not yet used in analysis.
 → Potential for better neutron measurement.
- Statistical error is still dominant. \rightarrow Accelerator and beamline upgrade.
- Neutrino interaction model uncertainty is large. → Near detector upgrade.

Accelerator and beamline upgrade

- Increase beam power \sim 500kW \rightarrow I.3MW by J-PARC main ring power supply and RF.
- Increase horn current 250kA→320kA to increase neutrino beam power (~10%) and reduce wrong-sign background.

Expected change of v_{μ} and \overline{v}_{μ} fluxes

by horn current 250kA→320kA

SK: Neutrino mode, v_{μ} Flux peak

Near detector upgrade

- Upstream part of ND280 (P0D) will be replaced to new detectors.
- Super-FGD: 2 million 1 cm³ cubic scintillators readout by fibers in 3 directions.
- High-angle TPCs: Precisely measure high-angle particles from neutrino interactions.
- TOF counters: Provide 150 ps time resolution.

Talk by César Jesús-Valls on Mar. 29th

Super-FGD under construction

Super-FGD structure

Near detector upgrade

- 4π acceptance like Super-Kamiokande.
- Low momentum threshold for hadrons (especially protons).
- Better separation of electron / γ -ray.
- Neutron kinematics measurement using ToF.

Muon detection efficiency vs angle

Electron / γ -ray separation

Summary

- T2K aims for precise measurement of neutrino oscillations and search for CP violation.
- Oscillation analysis using 3.64×10²¹ POT data with many improvements.
- World-leading measurement of atmospheric mixing parameters.
- Large region of δ_{CP} excluded at 3σ . CP conservation ($\sin \delta_{CP} = 0$) excluded at 90%.
- Upgrade of accelerator, beamline and near detector ongoing for more precise measurement of neutrino oscillations.