

International Conference on the Physics of the Two Infinities

The T2K near detector upgrade

César JESÚS-VALLS 29th March 2023 cesar.jesus-valls@ipmu.jp

On behalf of the T2K collaboration

The T2K experiment

The T2K experiment

- Discovery of $\theta_{13} > 0$.
- First hints of $\delta_{CP} \neq \{0,\pi\}$
- Leading sensitivity to $\Delta m_{23}^2, \theta_{23}, \delta_{CP}$.

T2R PMU

T2R PMU

The ND280 upgrade: Overview

T2R PMU

Motivations

- ND280 is an essential component of T2K.
- Over years statistical errors \downarrow so we need systematic errors \downarrow .

What can we improve?

The ND280 upgrade: Design

2019 TDR e-print: 1901.03750 + Beam upgrade (×2.6 more neutrinos!) PTEP 2021 (2021) 3, 033G01

The ND280 upgrade: Design

2019 TDR e-print: 1901.03750 + Beam upgrade (×2.6 more neutrinos!) PTEP 2021 (2021) 3, 033G01

The ND280 upgrade: Design

Three novel technologies in ND280

"field strips" "mirror strips'

Cu strips & Glue & Kapton (100µm)

Aramid Fiber 2mm

Aramid Honeycomb 35mm

Aramid Fiber 2mm

Kapton (125µm) Al foil (50µm)

 Original
 12cm & 3.4% X₀

 NEW
 4cm & 2% X₀

Cu strips & Glue & Kapton (100µm)

Aramid Fiber 2mm

Aramid Honeycomb 35mm

Aramid Fiber 2mm

Kapton (125µm) Al foil (50µm)

Original 12cm & 3.4% X₀ **NEW 4cm & 2% X**₀

"field strips" "mirror strips"

Cu strips & Glue & Kapton (100µm)

Aramid Fiber 2mm

Aramid Honeycomb 35mm

Aramid Fiber 2mm

Kapton (125µm) Al foil (50µm)

Anode plane with 8 ERAMs

 Original
 12cm & 3.4% X₀

 NEW
 4cm & 2% X₀

Cu strips & Glue & Kapton (100µm)

Aramid Fiber 2mm

Aramid Honeycomb 35mm

Aramid Fiber 2mm

Kapton (125µm) Al foil (50µm)

 Original
 12cm & 3.4% X₀

 NEW
 4cm & 2% X₀

Anode plane with 8 ERAMs

Original ND280 TPCs Bulk Micromegas

NEW ND280 Resistive Micromegas

Field cage R&D and validation

4 prototypes (2 small 2 large), hundreds of validation tests Production readiness $2023 \rightarrow$ final construction ongoing

Field cage R&D and validation

ERAM R&D and validation

First ERAM prototype in 2018. Beam test @CERN
 Old electronics & module layout.

4 prototypes (2 small 2 large), hundreds of validation tests Production readiness $2023 \rightarrow$ final construction ongoing

Concept validation

NIMA 957 (2020) 163286 • e-Print: 1907.07060

Field cage R&D and validation

ERAM R&D and validation

- First ERAM prototype in 2018. Beam test @CERN
 Old electronics & module layout.
- Second ERAM test in 2019. Beam test @DESY New electronics & module layout.

4 prototypes (2 small 2 large), hundreds of validation tests Production readiness $2023 \rightarrow$ final construction ongoing

Concept validation

NIMA 957 (2020) 163286 • e-Print: 1907.07060

Final design validation

NIMA 1025 (2022) 166109 • e-Print: 2106.12634

Field cage R&D and validation

ERAM R&D and validation

- First ERAM prototype in 2018. Beam test @CERN
 Old electronics & module layout.
- Second ERAM test in 2019. Beam test @DESY New electronics & module layout.
- Third ERAM module in 2021. Beam test @DESY Updated resistivity

4 prototypes (2 small 2 large), hundreds of validation tests Production readiness $2023 \rightarrow$ final construction ongoing

Concept validation

NIMA 957 (2020) 163286 • e-Print: 1907.07060

Final design validation

NIMA 1025 (2022) 166109 • e-Print: 2106.12634

ERAM characterization & simulation validation

• e-Print: 2212.06541 (Dec 2022)

Field cage R&D and validation

ERAM R&D and validation

- First ERAM prototype in 2018. Beam test @CERN
 Old electronics & module layout.
- Second ERAM test in 2019. Beam test @DESY New electronics & module layout.
- Third ERAM module in 2021. Beam test @DESY Updated resistivity
- ERAM production. Test bench @CERN with ⁵⁵Fe.

4 prototypes (2 small 2 large), hundreds of validation tests Production readiness $2023 \rightarrow$ final construction ongoing

Concept validation

NIMA 957 (2020) 163286 • e-Print: 1907.07060

Final design validation

NIMA 1025 (2022) 166109 • e-Print: 2106.12634

ERAM characterization & simulation validation

• e-Print: 2212.06541 (Dec 2022)

Production characterization, gain and spreading of 40 ERAMs

[•] e-Print: 2303.04481 (March 2023)

Field cage R&D and validation

ERAM R&D and validation

- First ERAM prototype in 2018. Beam test @CERN
 Old electronics & module layout.
- Second ERAM test in 2019. Beam test @DESY New electronics & module layout.
- Third ERAM module in 2021. Beam test @DESY Updated resistivity
- ERAM production. Test bench @CERN with ⁵⁵Fe.

Achievements

- Oramatic dead volume reduction.
- First experiment using resistive Micromegas.
- Same dE/dx performance and $> \times 2$ better momentum performance with <33% pads.

4 prototypes (2 small 2 large), hundreds of validation tests Production readiness $2023 \rightarrow$ final construction ongoing

Concept validation

NIMA 957 (2020) 163286 • e-Print: 1907.07060

Final design validation

NIMA 1025 (2022) 166109 • e-Print: 2106.12634

ERAM characterization & simulation validation

• e-Print: 2212.06541 (Dec 2022)

Production characterization, gain and spreading of 40 ERAMs

• e-Print: 2303.04481 (March 2023)

1cm³

A novel neutrino target concept for T2K in 2017

Picture of a single cube

JINST 13 (2018) 02, P02006 • e-Print: 1707.01785

1cm³

A novel neutrino target concept for T2K in 2017

Picture of a single cube

JINST 13 (2018) 02, P02006 • e-Print: 1707.01785

Three 2D projected hits are merged into 3D tracks

PRD 103 (2021) 3, 032005 • e-Print: 2009.00688

A novel neutrino target concept for T2K in 2017

Picture of a single cube

JINST 13 (2018) 02, P02006 • e-Print: 1707.01785

- Large target mass of 2 tons (same as FGD1+FGD2).
- Isotropic efficiency.
- Lower detection threshold.

A novel neutrino target concept for T2K in 2017

Picture of a single cube

JINST 13 (2018) 02, P02006 • e-Print: 1707.01785

- Large target mass of 2 tons (same as FGD1+FGD2).
- Isotropic efficiency.
- Lower detection threshold.
- 3D granularity

A novel neutrino target concept for T2K in 2017

Picture of a single cube

JINST 13 (2018) 02, P02006 • e-Print: 1707.01785

- Large target mass of 2 tons (same as FGD1+FGD2).
- Isotropic efficiency.
- Lower detection threshold.
- 3D granularity
- Excellent time resolution <1ns MIP.

A novel neutrino target concept for T2K in 2017

Picture of a single cube

JINST 13 (2018) 02, P02006 • e-Print: 1707.01785

- Large target mass of 2 tons (same as FGD1+FGD2).
- Isotropic efficiency.
- Lower detection threshold.
- 3D granularity
- Excellent time resolution <1ns MIP.</p>
- Very enhanced PID, e.g. proton bragg peak ID, e/γ separation

Before closing the box

Before closing the box

Box concept

- 120k holes of 3mm (50µm tolerance).
- Integrated 8x8 MPPC readout interface.
- 4cm thickness, sag of 0.5cm under 2 tons.

Before closing the box

Box in assembly basket

Before closing the box

WLS Fiber insertion

Box in assembly basket

Before closing the box

WLS Fiber insertion

Cabling

Before closing the box

WLS Fiber insertion

Box in assembly basket

Electronics

Before closing the box

WLS Fiber insertion

Box in assembly basket

Electronics

High dynamic range (HG, LG, ToT).
Sampling rate 400Mhz.

Before closing the box

Box in assembly basket

Calibration system in opposite fiber end

The 5x5x5 cubes prototype

The 24x8x48 cubes prototype

The 5x5x5 cubes prototype

<section-header>

SuperFGD R&D and characterization

• 5x5x5 prototype, 2018, tested with cosmic

Proof-of-concept

NIMA 923 (2019) 134-138 • e-Print: 1808.08829

The 5x5x5 cubes prototype

The 24x8x48 cubes prototype

SuperFGD R&D and characterization

• 5x5x5 prototype, 2018, tested with cosmic

Proof-of-concept

NIMA 923 (2019) 134-138 • e-Print: 1808.08829

The 5x5x5 cubes prototype

The 24x8x48 cubes prototype

SuperFGD R&D and characterization

5x5x5 prototype, 2018, tested with cosmic

Proof-of-concept

NIMA 923 (2019) 134-138 • e-Print: 1808.08829

Six 2x2 m² ToF panels envolve Planes made of scintillator bars TPCs & SuperFGD

Six 2x2 m² ToF panels envolve Planes made of scintillator bars ToF setup at CERN TPCs & SuperFGD

Six 2x2 m² ToF panels envolve Planes made of scintillator bars ToF setup at CERN TPCs & SuperFGD

Goal

Discriminate particle sense of motion

Discriminate particle sense of motion

Six $2x2 m^2$ ToF panels envolve Planes made of scintillator bars ToF setup at CERN **TPCs & SuperFGD**

Conclusions

 The ND280 upgrade is near to its completion. All final sub-detectors are being assembled. Integration, commissioning & first data taking in 2023.

Conclusions

The ND280 upgrade is near to its completion. All final sub-detectors are being assembled. Integration, commissioning & first data taking in 2023.

Combination of improvements is expected to boost T2K physics potential (see back up!). some examples PRD 105 (2022) 3, 032010 & PRD 101 (2020) 9, 092003 & PRD 106 (2022) 3, 032009

O Improved efficiencies and purities + completely new analysis methods & variables. O Better understand & constrain key systematics \rightarrow push best limits in Δm_{23}^2 , θ_{23} , δ_{CP} .

Back Up

The T2K neutrino beam

T2R PMU

T2K neutrino beam line uses off-axis technique:

Highly pure ν_{μ} or $\bar{\nu}_{\mu}$ flux

Flux model uncertainty:

Narrow peak @ 0.6 GeV

T2K uses NA61/SHINE experiment on meson production data to model the flux production.

• New analysis used T2K replica target in NA61/SHINE -> Error in flux from 8% to 5%.

T2R PMU

Latest OA results

e-Print: 2303.03222

Selection	Topology	Target	Eff. (%)	Pur. (%)
v_{μ} in <i>v</i> -mode	0π	FGD1	48.0	71.3
		FGD2	48.0	68.2
	$1\pi^+$	FGD1	29.0	52.5
		FGD2	24.0	51.3
	Other	FGD1	30.0	71.4
		FGD2	30.0	71.2
$\overline{\nu}_{\mu}$ in $\overline{\nu}$ -mode	0π	FGD1	70.0	74.5
		FGD2	69.0	72.7
	1 π -	FGD1	19.3	45.4
		FGD2	17.2	41.0
	Other	FGD1	26.5	26.3
		FGD2	25.2	26.0
v_{μ} in \overline{v} -mode	0π	FGD1	60.3	55.9
		FGD2	60.3	52.8
	$1\pi^+$	FGD1	30.3	44.4
		FGD2	26.0	44.8
	Other	FGD1	27.4	68.3
		FGD2	27.1	69.5

и

 $N_{\pi} = 0$

N'

Latest OA results			e-Print: 2303.03222	
Selection	Topology	Target	Eff. (%)	Pur. (%)
v_{μ} in <i>v</i> -mode	0π	FGD1	48.0	71.3
		FGD2	48.0	68.2
	$1\pi^+$	FGD1	29.0	52.5
		FGD2	24.0	51.3
	Other	FGD1	30.0	71.4
		FGD2	30.0	71.2
\overline{v}_{μ} in \overline{v} -mode	0π	FGD1	70.0	74.5
		FGD2	69.0	72.7
	1 π ⁻	FGD1	19.3	45.4
		FGD2	17.2	41.0
	Other	FGD1	26.5	26.3
		FGD2	25.2	26.0
v_{μ} in \overline{v} -mode	0π	FGD1	60.3	55.9
		FGD2	60.3	52.8
	1 π +	FGD1	30.3	44.4
		FGD2	26.0	44.8
	Other	FGD1	27.4	68.3
		FGD2	27.1	69.5

17

K A V L I PMU

New detector capabilities

T2R PMU

-0.2 -0.1

0

0.1

0.2

0.3 0.4 BDT response

Improved electron reconstruction

momentum resolution (%)

T_{neutron} [MeV]

Muon mean lifetime ≈ 2 µs, hit resolution $\sigma_t \approx 1$

18

New analysis possibilities

some examples

Detailed studies of transverse kinematic imbalance

• High quality hadronic information will be game-changing. In addition to $(p_{\ell}, \theta_{\ell})$ can use $(p_N, \delta_{p_T}, \delta_{\alpha_T}, \mathsf{E}_{vis}...)$:

New analysis possibilities

some examples

 $\, \odot \,$ Low $\delta_{p_T} \, {\rm can} \,$ be used to identify events with low nuclear effects

19

New analysis possibilities

Arbitary units

some examples

19