Status and perspectives of Direct Dark Matter searches

Luca Scotto Lavina, LPNHE, Paris

International Conference on the Physics of the Two Infinities, Kyoto, March 28th, 2023

The known and the unknown

The known and the unknown

Particle candidates :

- Weakly Interacting Massive Particles (WIMPs) (WIMP miracle, SUSY, ...)
- Axions (QCD axions and Axion-Like Particles)
- Sterile neutrinos (~keV → "warm" DM)
- A dark sector ?

Alternatives :

- Primordial black holes
- MACHOs
- Modifications of gravity

Ordinary Matter: 4.8% Dark Matter: 25.9% Dark Matter: 25.9% Dark Energy: 69.2%

Fantastic Beasts and Where to Find Them

Hunting WIMPs

Make ! \rightarrow "Detection" with colliders : measuring missing P_T (CMS, ATLAS @ LHC)

(AMS, PAMELA, CTA, IceCube, ...)

Direct detection in one phrase (and one picture)

WIMP elastically scatters off nuclei

Direct detection in one phrase, but...

WIMP elastically scatters off nuclei **?**

The scoped energy domains

Direct detection in one slide

Spin Independent : χ scatters coherently off of the **entire nucleus** A: $\sigma \sim A^2$

Spin Dependent : mainly unpaired nucleons contribute to scattering amplitude: $\sigma \sim J(J+1)$

Experimental challenge :

- low energy thresholds : O(1) keV
- very low backgrounds

Current status of Dark Matter hunt

Double phase noble targets TPCs

High masses: PandaX-4T (2021), then LZ (2022)

High masses: XENONnT (2023)

Exposure : 1.1 t x year

Electronic recoil background rate : $(15.8 \pm 1.3) \text{ events}/(t \cdot y \cdot \text{keV})$

See the **talk of Ko Abe** (Tokyo University) for an overview of **XENONnT analyses** (Wednesday morning parallel session)

Constraining large downwards fluctuations

- Set of conventions to estabilish a standard on statistical treatment of data on the field : arXiv:2105.00599
- To constrain large downwards fluctuations, the limit should be subjected to a power-constraint : arXiv:1105.3166
- However, the above reccommandations defined the sensitivity in terms of *discovery power*, while it should rather be in terms of *rejection power*

conservative power-constraint on itself and re-did it on the other recent LXe experiments

- Full curve : 90% C.L. limit with a powerconstraint to restrict it at or above the median unconstrained upper limit (\rightarrow 0.5).
- Dashed curve : no power contraint applied

Careful on comparing results using different conventions !

Low masses : DarkSide-50

S1 and S2 Yields:

- S1 Yield ~7.9 pe/keV at null field
- S1 Yield ~7.0 pe/keV at 200 V/cm
- S2 yield ~23 pe / e-

Electron lifetime > 5 ms

Maximum drift time: 376 µs

ER and NR excite fast and slow in different proportions in noble liquids.

In Argon, great **ER** discrimination factor: ~ 10⁸

Low masses : DarkSide-50

Look at the **ionization only** spectrum (W_{ion} = 23.5 eV, gain in the gas: 23 PE/e⁻) **Below 3 keV**_{ee}: give up the scintillation signal (too small to trigger the detector), and thus - **minimal fiducialization** (only radial)

- no PSD

arXiv:2207.11966 [hep-ex]

Quenching fluctuations, two approaches :

- No Quenching (unphysical but conservative)
- Binomial quenching

Forthcoming years : DarkSide-20k

- To be installed in Hall C at LNGS
- Hosted inside a 700 t AAr LAr bath, in a cryostat à la ProtoDUNE
- Target: 50 t UAr as WIMP target
- Veto: 35 t UAr + custom developed Gd-PMMA, optimized for radiogenic neutrons
- Novel readout system for the scintillation light, based on grouped SiPM arrays (> 25 m²)

Underground Argon procurement ongoing

Collaboration targets data taking for 2026

DarkSide-20k : SiPM arrays

Other physics

Leptophilic dark matter

DM-electron scattering

Dark Matter with Skipper-CCDs

Main idea : ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD)

Three detectors : SENSEI, DAMIC @ SNOWLAB, DAMIC-M

Next generation experiments : low thresholds

Skipper-CCD is now a well estabilished technology

To gain sensitivity it needs to increase target mass :

- Silicium thickness
- High number of devices
- Improved background

Argon enough light and easily shielded to be competitive at low masses if a dedicated detector is built : **DS-LM** Challenge of single electrons background

Next generation experiments : high mass

The xenon community is uniting into the XLZD Consortium to build the ultimate xenon rare event observatory

- White paper: arXiv:2203.02309
- Baseline : Outcome of DARWIN R&D
- xlzd.org

Leading Xenon Researchers unite to build next-generation Dark Matter Detector

A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

J. Aalbers,^{1,2} K. Abe,^{3,4} V. Aerne,⁵ F. Agostini,⁶ S. Ahmed Maouloud,⁷ D.S. Akerib,^{1,2} D.Yu. Akimov,⁸ J. Akshat,⁹ A.K. Al Musalhi,¹⁰ F. Alder,¹¹ S.K. Alsum,¹² L. Althueser,¹³ C.S. Amarasinghe,¹⁴ F.D. Amaro,¹⁵ A. Ames,^{1,2} T.J. Anderson,^{1,2} B. Andrieu,⁷ N. Angelides,¹⁶ E. Angelino,¹⁷ J. Angevaare,¹⁸ V.C. Antochi,¹⁹ D. Antón Martin,²⁰ B. Antunovic,^{21,22} E. Aprile,²³ H.M. Araújo,¹⁶ J.E. Armstrong,²⁴ F. Arneodo,²⁵ M. Arthurs,¹⁴ P. Asadi,²⁶ S. Baek,²⁷ X. Bai,²⁸ D. Bajpai,²⁹ A. Baker,¹⁶ J. Balajthy,³⁰ S. Balashov,³¹ M. Balzer,³² A. Bandyopadhyay,³³ J. Bang,³⁴ E. Barberio,³⁵ J.W. Bargemann,³⁶ L. Baudis,⁵ D. Bauer,¹⁶ D. Baur,³⁷ A. Baxter,³⁸ A.L. Baxter,⁹ M. Bazyk,³⁹ K. Beattie,⁴⁰ J. Behrens,⁴¹ N.F. Bell,³⁵ L. Bellagamba,⁶ P. Beltrame,⁴² M. Benabderrahmane,²⁵ E.P. Bernard,^{43,40} G.F. Bertone,¹⁸ P. Bhattacharjee,⁴⁴ A. Bhatti,²⁴ A. Biekert,^{43,40} T.P. Biesiadzinski,^{1,2}

DARWIN : Dark matter detector ? No, astroparticle observatory

 $sin^2\theta_w$

Neutrino Energy [MeV]

0.8

0.7

0.6 (1 €

. م) 0.5

0.4

0.3

Challenges for DARWIN

- Efficient amplification of the ionization signal (improved structure of electrodes, floating electrodes ?, single phase ?)
- Radon reduction (online distillation, material reduction, acrilic vessel?)
- High purification rates (liquid phase purification)
- Muons / neutrons veto tagging
- Noble liquid handling (storage, recovery,...)
- Photosensors

Baseline option 3" PMTs R11410 (XENONnT, LZ)

senso

XENONnT online distillation < 1 µBq/kg (arXiv:2205.11492)

XENONnT storage and recovery

Past, present and future

Dark Matter searches by accelerators

How to represent the results

Mediator mass

- * Fix couplings
- * Fix DM mass
- #% C.L. on production cross section ratio of mediators

DM mass

- *Fix couplings
- Limits on spin χ-nucleon cross sections at # % C.L.
- Allow to compare collider searches with other experiments

Credits : F. Cirotto, Dark matter searches with the ATLAS detector

Towards the cross-section vs Dark Matter mass

Spin independent DM-nucleon interaction

E^{miss}+X

ATLAS Preliminary July 2017

Diiet

Panda.

XENON1T

Vector

 10^{2}

Dijet

Dijet 8 TeV Vs = 8 TeV, 20.3 fb

Phys. Rev. D. 91 052007 (2015)

Dijet 1s = 13 TeV, 37.0 fb

arXiv:1703.09127 [hep-ex]

ATLAS-CONF-2016-030

ATLAS-CONF-2016-070

 $E_T^{miss} + X$ $E_T^{miss} + \gamma \sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

Eur. Phys. J. C 77 (2017) 393

E^{miss}+Z Vs = 13 TeV, 36.1 fb

arXiv:1608.07648: arXiv:1602.03489

ATLAS-CONF-2017-060

ATLAS-CONF-2017-040

CRESST II

arXiv:1509.01515v1

-XENON1T

PandaX

arXiv:1607.07400

LUX

Dijet TLA Vs = 13 TeV, 3.4 fb

Dijet + ISR Vs = 13 TeV, 15.5 fb

DM Simplified Model Exclusions

Vector mediator, Dirac DM

ATLAS limits at 95% CL, direct det

10

 $g_a = 0.25, g_I = 0, g_{DM} = 1$

CRESST I

 10^{-37}

10⁻³⁸

 10^{-39}

10⁻⁴⁰

10-4

10-42

 10^{-43}

 10^{-44}

10⁻⁴⁵

10-46

 10^{-47}

10

σ_{SI} (DM-nucleon) [cm²]

Complementarity between accelerators and direct search at low mass only, and in any case based on coupling assumptions

 10^{3}

DM Mass [GeV]

Just to show the concept. Old data :

- ATLAS 2017
- Latest XENON1T results missing

Hunting axions

Models :

- Strong CP problem → "Peccei-Quinn" mechanism PQWW (Peccei-Quinn-Weinberg-Wilczek)
- Axion-photon coupling : $\mathcal{L}_{A\gamma} = -\frac{g_{A\gamma}}{4}AF_{\mu\nu}\widetilde{F}^{\mu\nu}$ $g_{A\gamma} \equiv \frac{\alpha}{2\pi}\frac{C_{A\gamma}}{f_A}$
- Now ruled out and replaced by two new benchmarch models : KSVZ and DFSZ

Many experiments fully dedicated on them :

Very wide mass (frequency) range. Each project aiming to reach the benchmarch models

DarkSide-20k : radiogenic neutron veto

 TPC surrounded by a single phase (S1 only) detector in UAr (35 tonne)

- Neutrons are captured by the Gd-loaded acrylic
- From the capture gamma ray shower up to 8 MeV
- Scintillation light is shifted by PEN wls and detected by SiPMs (400 channels) in both buffer and TPC
- ~90% tagging efficiency from simulation, acceptable accidental lifetime loss

Gd(MAA)₃ doped acrylic sheet

