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GRBS: PROMPT EMISSION

= High variability : ms — 100 ms
= Short duration: a few ms to a few min
= Two classes: short & long GRBs

BATSE

Photon Energy (MeV)

Great diversity of lightcurves ; Pulses: 100 ms — 10°s

Non-thermal spect. = cosmic accelerators: E ., ~ 100 keV — 1 MeV

Spectral evolution

Spectral diversity: classical GRBs, low luminosity-GRBs,
X-ray rich GRBs, X-ray Flashes, etc. 7



GRBS: AFTERGLOW (7 o (oopoted) AT it crven 2.2-4

= Lightcurves:
power-law decay,
breaks, variability
(flares, plateaus)
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= Redshift
= Mean redshift above 2 for long GRBs

= Maximum : GRB 090423 atz= 8.2
GRB 090429B atz = 9.3

= E, ~10°"to 10°% erg
(some under-luminous ; some monsters...) 5

Beppo-SAX/HETE2 era



GRBS: PROGENITORS

Long GRBs: direct evidence for the collapsar scenario

Star forming host galaxies / association of nearby LGRBs with SNae

Progenitors = a low fraction of massive stars
(conditions to produce a GRB? Mass? Metallicity? Rotation? Binarity?)

Using LGRBs to trace the cosmic star formation rate at large z?
(see e.g. Palmerio, Vergani et al. 2019 ; Palmerio & Daigne, 2022)

Using the sampl.e of LGRB host gala);ies to study « normal »
galaxies at large z (« normal » = not necessarily very bright).

Absorption spectro. (afterglow)
neutral medium, metallicity,
kinematics, etc. : host galaxy +
absorbers along the line-of-sight

‘ Emission spectro. (host)
. ionized medium

'ﬁ 'ﬁ'
o — ‘ ';
: 4 2]F (seethe recent example of GRB 210905A @
/ J z=6.3 by Saccardi, Vergani et al. 2023)
Cc

9



GRBS: PROGENITORS

Short GRBs: indirect evidence for the merger scenario

* Host galaxies GRB 050724 (short) : VLT obs. of the host galaxy
of any type L
(not necessarilystar-forming) -

= Possible large offsets
= delay/kicks
merger scenario
(BNS ; some NSBH ?)

Chandra

XRT

= A quasi-direct evidence:
association GW 170817 (BNS) / GRB 170817A (short)
(some caveats: nature of the GRB emission) 10

Barthelmy et al. 2005



GRBS: THEORY

= Cosmological distance: huge radiated energy (Ei,,, ~ 10°°-10°> erg)

iSO,y

= Variability + energetics: violent formation of a stellar mass BH (magnetar ?)

Log( R) [meters]
o

Central engine:
no direct em observation

GW?
Collapsar: currently out of reach / Merger: post-merger signal?



GRBS: THEORY

= Variability + energetics + gamma-ray spectrum: relativistic ejection
(only way to avoid a strong pair production)

Log( R) [meters]
R

Relativistic ejection:
no direct em observation

neutrinos? (early propagation)



GRBS: THEORY

= Prompt keV-MeV emission: internal origin in the ejecta
(only way to explain the fast variability)

Log( R) [meters]
o

ﬁ
Photosphere? (Therma

Dissipative Photosphere?
Shocks? (Particle accel. / Non-thermal rad.)
Magnetic Reconnection? (CR/Neutrinos?)



GRBS: THEORY

= Afterglow: deceleration by the ambient medium

Log( R) [meters]
o

ﬁ
Ultra-relativistic forward shock in the external medium

Reverse shock in the ejecta?
= particle acceleration / non-thermal radiation
(CR/neutrinos?)



GAMMA-RAY BURSTS AT TEV ENERGIES

Why is it interesting?
GRBs = cosmic accelerators

TeV to better understand:
- the distribution of accelerated particles
- the magnetic field
- the radiative processes (syn, SSC, other?)

- the possible contribution to proton acceleration
(UJHECRs? Neutrinos?

15



GRBS AT TEV ENERGIES

Already at least four GRBs detected at VHE (afterglow):
180720B (HESS) ; 190114C (MAGIC) ; 190829A (HESS) ; 201216C (MAGIC)
+ GRB 201009A (the BOAT) / LHASSO

1 w4 GEM (10-1.000key) ' ' + some other candidates
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GRB 221009A

= The BOAT (the Brightest Of All Times) - E;;,, ~10°° erg
(Saturation of gamma-ray detectors: Swift, Fermi, INTEGRAL, ...)

= Follow-up by many instruments and collaboration
z=0.151 (de Ugarte Postigo et al. 2022, Castro-Tirado et al. 2022, Izzo et al. 2022, Malesani et al. 2023)
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Here: data obtained by HXMT + GRANDMA (Kann et al. [FD] 2023)
GRANDMA = network of > 30 professionnal and amateur telescopes

= Standard afterglow model does not work well: puzzling event

(Laskar et al. 2023, O’ Connor et al. 2023, Kann et al. [FD] 2023, ...) 17



GRB 221009A

= Detection by Fermi-LAT up to ~400 GeV (Xia et al. 2022a,b)

= GCN #32677 (Huang et al. 2022):
detection by LHASSO, >5000 VHE photons (> 500 GeV)

= LHASSO detection during the first 2000 s:
Prompt or early afterglow (prompt in soft y-rays ~600 s)

= LHASSO detects VHE photons up to E,,,, ~18 TeV:
Strong tension with EBL
We should wait for the LHASSO publication with the full analysis:

energy calibration?

= No detection by IceCube or KM3NET

18



GRBS AT TEV ENERGIES

= Confirmed detections : Afterglow (including the very early afterglow for 190114C)
= probe the deceleration phase

= Standard afterglow model with emission of shock-accelerated
electrons (syn + SSC) works

= New constraints on electron acceleration, magnetic field, etc.
(most afterglows: synchrotron only, many parameter degeneracies)

= No need for an hadronic component at this stage?

* Prompt emission?
Needs a large f.o.v (HAWK/LHASSO) or a fast response (CTA?)

19



GAMMA-RAY BURSTS
ENTERING THE MULTI-MESSENGER ERA.
GW170817/GRB170817A

20



THE 170817 MM EVENT o

| h
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Short amma-ray burst:
physical origin?

|
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- August 17, 2017

August 21, 2017
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Kilonova: red
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Afterglow: radio to X-rays + VLBI
Gravitational waves 21



LATERAL STRUCTURE OF THE JET

= 170817: a unique multi-wavelength data set - peak flux @ > 100 days

= Standard afterglow model (synchrotron from e accelerated at the FS)
+ lateral structure in the jet: good fits (late evolution: lateral expansion?)

Radio (3 GHz)
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Pellouin & Daigne in preparation 22



SIGNATURES OF THE LATERAL STRUCTURE IN GRBS?

= The lateral structure may be inherited from the early propagation
of the ejecta and may be a common features in GRBs.

- SGRB: interaction with the kilonova ejecta
- LGRB: interaction with the collapsing envelope

- Can we find signatures of this lateral structure in cosmic GRBs?
Main difference: large distance/on-axis vs small distance/off-axis

- Note 1 : for SGRBs, this interaction can also explain the origin of
GRB170817A (shock breakout) and the GW-GRB delay: see e.g. Bromberg
et al. 2018).

- Note 2 : especially in LGRBs, this interaction is also discussed as a possible
phase of neutrino emission.

23



SIGNATURES OF THE LATERAL STRUCTURE IN GRBS?

= The lateral structure may be inherited from the early propagation

of the ejecta and may be a common features in GRBs.

= Can we find signatures of this lateral structure in cosmic GRBs?
Part of the PhD project of R. Duque @ |AP

Puzzling features in the early X-ray afterglow (Swift/XRT)

Swift/XRT data of GRB 061121 Swift/XRT data of GRB 100619A
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SIGNATURES OF THE LATERAL STRUCTURE IN GRBS?

= The lateral structure may be inherited from the early propagation
of the ejecta and may be a common features in GRBs.

= Can we find signatures of this lateral structure in cosmic GRBs?
Part of the PhD project of R. Duque @ |AP

Beniamini et al. [Duque, FD] 2020

Slightly off-axis jets:
X-ray plateaus and flares?

NP D uque et al. [FD] 2022



LATERAL STRUCTURE OF THE JET

= 170817: a unique multi-wavelength data set - peak flux @ > 100 days

= Standard afterglow model (synchrotron from e accelerated at the FS)
+ lateral structure in the jet: good fits (late evolution: lateral expansion?)

Radio (3 GHz)
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Pellouin & Daigne in preparation 26



TEV AFTERGLOW OF A BNS MERGER?

= 170817: a unique multi-wavelength data set

= Standard afterglow model (synchrotron from e accelerated at the FS)
+ lateral structure in the jet: good fits (late evolution: lateral expansion?)

HESS limit at the peak

Radio (3 GHz) (HESS Collab 2020)
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TEV AFTERGLOW OF A BNS MERGER?

= Full calculation of the afterglow of a structured jet including SSC
in Klein-Nishina regime
Part of the PhD work of Clément Pellouin @ |AP

Radio lightcurve (3 GHz) Spectrum at the peak
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Pellouin & Daigne in preparation
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TEV AFTERGLOW OF A BNS MERGER?

= Full calculation including SSC in Klein-Nishina regime

= TeV lightcurve peaks ~2 orders of magnitude below the HESS limit

Lightcurve @ 1TeV Spectrum@VHE peak (99 days)
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Pellouin & Daigne in preparation
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TEV AFTERGLOW OF A BNS MERGER?

= Same afterglow seen less off-axis (~10°) becomes detectable by HESS

= and could be detectable by CTAO at > 100 Mpc

Lightcurve @ 1TeV Spectrum@VHE peak (5 days)
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Pellouin & Daigne in preparation
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TEV AFTERGLOW OF A BNS MERGER?

= Same afterglow (same viewing angle) with a higher external density can
become detectable

Lightcurve @ 1TeV -3 103 cm™ Spectrum@VHE peak (99 days)
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TEV AFTERGLOW OF A BNS MERGER?

= Same afterglow (same viewing angle) with a higher external density can
become detectable

F,[mlyl @ 1 TeV
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Pellouin & Daigne in preparation
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TEV AFTERGLOW OF A BNS MERGER?

= Same afterglow (same viewing angle) with a higher external density can
become detectable

Lightcurve @ 1TeV- 101 cm3 Spectrum@VHE peak (34 days)
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Pellouin & Daigne in preparation
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TEV AFTERGLOW OF A BNS MERGER?

= Same afterglow (same viewing angle) with a higher external density can
become detectable

Lightcurve @ 1TeV -1 cm?3 Spectrum@VHE peak (15 days)
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Pellouin & Daigne in preparation
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TEV AFTERGLOW OF A BNS MERGER?

= Same afterglow (same viewing angle) with a higher external density can
become detectable

Lightcurve @ 1TeV - 10 cm?3 Spectrum@VHE peak (7 days)
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TEV AFTERGLOW OF A BNS MERGER?

= Same afterglow (same viewing angle) with a higher external density can
become detectable

= If a formation channel leading to fast mergers exists,
these systems should be over-represented in the GW-AG sample,
due to brighter afterglows (Duque et al. [FD] 2020)

= These systems may be the only ones detected at VHE:
direct signature of high density environment

= Many arguments in favor of such systems: some SGRB afterglow fits,
some SGRB low offset in host galaxy, early r-process enrichment, etc.

= A possible new constraint on the stellar physics in binaries

Pellouin & Daigne in preparation
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NEW MULTI-MESSENGER DETECTIONS?

37



170817 & COSMOLOGY: HO

= GW: degeneracy distance-inclination

= AG VLBI: constraint on inclination - improves the measurement of HO

— GW + z (EM)
G VLB LC (PL) f— (AG-VLBI)

Planck
SHoES
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0.00 : : : : I |
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= See discussion in Mastrogiovanni et al. [FD] 2021: building a sample with
such multiple observations will be slow, but each new event has an impact.
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NEW MM ASSOCIATIONS?

= LVK: run O4 is starting
= What do population models including EM counterparts say?
= Best candidate: KN (quasi-isotropic emission in V-IR)

= |f KN is detected: accurate position, multi-wavelength search

39



NEW MM ASSOCIATIONS?

GW-detected BNS (O4): KN rate above a given limit mag.

KN Magnitude @ peak (g,r,i,z) (rlim)

AB magnitude

« Bright » KN r<19
Rate does not evolve beyond O3

(normalization: assumes 10 GW-detected BNS per year in O4) 40

Mochkovitch, Daigne, Duque & Zitouni, 2021



NEW MM ASSOCIATIONS?

GW-detected BNS (O4):
KN Magnitude @ peak (g,r,i,z) (rlim)

AB magnitude

Deeper search: rlim=20-21

Significant increase of the rate with improved GW sensitivity
O4: several detectable KN per year

O5: > 10 detectable KN per year

Detectable — Detected: strategy? (ZTF+LSST/Vera Rubin+follow-up telescopes...)

(normalization: assumes 10 GW-detected BNS per year in O4)

N

KN rate above a given limit mag.

tch, Daigne, Duque & Zitouni, 2021
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NEW MM ASSOCIATIONS?

GW-detected BNS (O4): viewing angle vs distance
for a given limit magnitude

I ' ' ' No orphan KN
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NEW MM ASSOCIATIONS?

GW-detected BNS (O4): viewing angle vs distance
for a given limit magnitude

~1No orphan KN
rlim=20 {KN+GW= still rare

GW trigger without a detectable KN
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NEW MM ASSOCIATIONS?

GW-detected BNS (O4): viewing angle vs distance

for a given limit magnitude

7 10rphan KN

! Most GW-triggers

' have a detectable KN

rlim = 21

GW trigger without a detectable KN

~ r  GW trigger+detectable KN
< | ) orphan KN = detectable KN
\ w/o a GW trigger

ZTF: 23 months, rlim=20.5: no orpha|j KN (Andreoni et al. 20)
Model (assuming ~50% sky coverage): 0.4-2.6 orphan KNae
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NEW MM ASSOCIATIONS?

GW-detected BNS (O4): viewing angle vs distance
for a given limit magnitude

] Orphan KN: high rate
rlim = 22 1 Most GW-triggers
{ have a detectable KN

GW trigger without a detectable KN

. =~ GWtrigger+detectable KN

3 o0 > orphan KN = detectable KN
o, w/o a GW trigger
= \

Orphan KN (search strategy for LSST?)

cCO-axis

| =on-axis bright SGRB

| Sl a1 1K o

A raas e s i IS -

Mochkovitch, Daigne, Duque & Zitouni, 2021



NEW MM ASSOCIATIONS?

GW-detected BNS (O4): viewing angle vs distance
for a given limit magnitude
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| =on-axis bright SGRB

Mochkovitch, Daigne, Duque & Zitouni, 2021



NEW MM ASSOCIATIONS?

= A major challenge: from « detectable » to « detected » events.

= A key quantity: localization accuracy

= Associations during O4 should remain rare, best candidate = kilonova
= Other channels can be explored to study the post-merger physics:

= GRB+KN

= Orphan KN

= Orphan AG

= In the future: large field-of-view/deep limit magnitude instruments should
play a major role in this quest (observation cadence for LSST-Rubin?)

= Association GW - bright short GRB (i.e. on-axis): small probability in O4,
better in O5 and much better with Einstein Telescope
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SVOM

Sino-French mission, to be launched at the end of 2023
(P.l. J. Wei (China) & B. Cordier (France))

A satellite with four instruments (gamma-rays, X-rays, visible)
(Large fov /Narrow fov / Slew / Anti-Solar pointing)

Complementary ground-based instruments (visible, near-infrared)

Core program: gamma-ray bursts
MM program multi-wavelength follow-up of GW, v alerts
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SVUM GRBS ' Compared ‘t<'> Swift / Ferrhi: a smaller sample,

but with well-characterized GRBs (prompt,
afterglow, redshift).

‘ GRB trigger ‘
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SUMMARY

= GRBs are extreme phenomena emblematic of high-energy/multi-
messenger astrophysics, with potential applications in cosmology.

= 25 years after the discovery of the first afterglow (GRB 970228, BeppoSAX),
new windows have open recently: TeV, GW

= A new generation of instruments is coming: more detections expected.

Among them: SVOM to be launched at the end of 2023.

THANKS!



