

Frédéric Daigne

(Institut d'Astrophysique de Paris; Sorbonne University)

- What are GRBs?
- Recent advances:
 - GRBs at TeV
 - GW170817 / GRB170817A
- What did we learn?
- Perspectives for GRB studies in the MM era Application to stellar physics (binaries) & cosmology
- SVOM

Frédéric Daigne

(Institut d'Astrophysique de Paris; Sorbonne University)

International Conference on the Physics of the Two Infinities, Kyoto, March 30, 2023

Frédéric Daigne

(Institut d'Astrophysique de Paris; Sorbonne University)

Merger

Kandinksy - Composition 8- 1923 Guggenheim Museum, New-Yörk

Kandinksy - Curves and sharp angles - 1923 Guggenheim Museum, New-York

International Conference on the Physics of the Two Infinities, Kyoto, March 30, 2023

923

es

sharp ang

Jurves and

New-York

GAMMA-RAY BURSTS IN THE MULTI-MESSENGER ERA

Frédéric Daigne

(Institut d'Astrophysique de Paris; Sorbonne University)

GAMMA-RAY BURSTS IN THE MULTI-MESSENGER ERA

Frédéric Daigne

(Institut d'Astrophysique de Paris; Sorbonne University)

923 es ang sharp Guggenheim Museum, Jurves and Sandinksy

New-York

International Conference on the Physics of the Two Infinities, Kyoto, March 30, 2023

Frédéric Daigne

(Institut d'Astrophysique de Paris; Sorbonne University)

GRBS: PROMPT EMISSION

- High variability : $ms \rightarrow 100 ms$
- Short duration: a few ms to a few min
- Two classes: short & long GRBs

- Great diversity of lightcurves ; Pulses: $100 \text{ ms} \rightarrow 10 \text{ s}$
- Non-thermal spect. = cosmic accelerators: $E_{peak} \sim 100 \text{ keV} \rightarrow 1 \text{ MeV}$
- Spectral evolution
- Spectral diversity: classical GRBs, low luminosity-GRBs, X-ray rich GRBs, X-ray Flashes, etc.

GRBS: AFTERGLOW

- Lightcurves: power-law decay, breaks, variability (flares, plateaus)
- Spectral evolution: X-rays to radio

Redshift

- Mean redshift above 2 for long GRBs
- Maximum : GRB 090423 at z = 8.2 GRB 090429B at z = 9.3
- E_{iso} ~ 10⁵¹ to 10⁵⁴ erg (some under-luminous ; some monsters...)

GRBS: PROGENITORS

Long GRBs: direct evidence for the collapsar scenario

- Star forming host galaxies / association of nearby LGRBs with SNae
- Progenitors = a low fraction of massive stars (conditions to produce a GRB? Mass? Metallicity? Rotation? Binarity?)
- Using LGRBs to trace the cosmic star formation rate at large z? (see e.g. Palmerio, Vergani et al. 2019 ; Palmerio & Daigne, 2022)
- Using the sample of LGRB host galaxies to study « normal » galaxies at large z (« normal » = not necessarily very bright).

Absorption spectro. (afterglow)

neutral medium, metallicity, kinematics, etc. : host galaxy + absorbers along the line-of-sight

Emission spectro. (host)

ionized medium

(see the recent example of GRB 210905A @ z=6.3 by Saccardi, Vergani et al. 2023)

GRBS: PROGENITORS

Short GRBs: indirect evidence for the merger scenario

- Host galaxies of any type (not necessarilystar-forming)
- Possible large offsets

 delay/kicks
 merger scenario
 (BNS ; some NSBH ?)

 A quasi-direct evidence: association GW 170817 (BNS) / GRB 170817A (short) (some caveats: nature of the GRB emission)

• Cosmological distance: huge radiated energy ($E_{iso,\gamma} \sim 10^{50}$ -10⁵⁵ erg)

Variability + energetics: violent formation of a stellar mass BH (magnetar ?)

Collapsar: currently out of reach / Merger: post-merger signal?

 Variability + energetics + gamma-ray spectrum: relativistic ejection (only way to avoid a strong pair production)

Prompt keV-MeV emission: internal origin in the ejecta

(only way to explain the fast variability)

Afterglow: deceleration by the ambient medium

⇒ particle acceleration / non-thermal radiation (CR/neutrinos?)

GAMMA-RAY BURSTS AT TEV ENERGIES

Why is it interesting? GRBs = cosmic accelerators

TeV to better understand:

- the distribution of accelerated particles
 - the magnetic field
- the radiative processes (syn, SSC, other?)
- the possible contribution to proton acceleration (U)HECRs? Neutrinos?

GRBS AT TEV ENERGIES

Already at least four GRBs detected at VHE (afterglow): 180720B (HESS) ; 190114C (MAGIC) ; 190829A (HESS) ; 201216C (MAGIC)

+ GRB 201009A (the BOAT) / LHASSO + some other candidates

GRB 221009A

- The BOAT (the Brightest Of All Times) E_{iso,γ} ~10⁵⁵ erg (Saturation of gamma-ray detectors: Swift, Fermi, INTEGRAL, ...)
- Follow-up by many instruments and collaboration

z = 0.151 (de Ugarte Postigo et al. 2022, Castro-Tirado et al. 2022, Izzo et al. 2022, Malesani et al. 2023)

Here: data obtained by HXMT + GRANDMA (Kann et al. [FD] 2023) GRANDMA = network of > 30 professionnal and amateur telescopes

Standard afterglow model does not work well: puzzling event

(Laskar et al. 2023, O' Connor et al. 2023, Kann et al. [FD] 2023, ...)

GRB 221009A

- Detection by Fermi-LAT up to ~400 GeV (Xia et al. 2022a,b)
- GCN #32677 (Huang et al. 2022): detection by LHASSO, >5000 VHE photons (> 500 GeV)
 - LHASSO detection during the first 2000 s:
 Prompt or early afterglow (prompt in soft γ-rays ~600 s)
 - LHASSO detects VHE photons up to E_{max} ~18 TeV: Strong tension with EBL

We should wait for the LHASSO publication with the full analysis: energy calibration?

No detection by IceCube or KM3NET

GRBS AT TEV ENERGIES

- Confirmed detections : Afterglow (including the very early afterglow for 190114C)
 = probe the deceleration phase
- Standard afterglow model with emission of shock-accelerated electrons (syn + SSC) works
- New constraints on electron acceleration, magnetic field, etc. (most afterglows: synchrotron only, many parameter degeneracies)

- No need for an hadronic component at this stage?
- Prompt emission?
 Needs a large f.o.v (HAWK/LHASSO) or a fast response (CTA?)

GAMMA-RAY BURSTS ENTERING THE MULTI-MESSENGER ERA: GW170817/GRB170817A

Gravitational waves

21

LATERAL STRUCTURE OF THE JET

- 170817: a unique multi-wavelength data set peak flux @ > 100 days
- Standard afterglow model (synchrotron from e⁻ accelerated at the FS)
 + lateral structure in the jet: good fits (late evolution: lateral expansion?)

SIGNATURES OF THE LATERAL STRUCTURE IN GRBS?

- The lateral structure may be inherited from the early propagation of the ejecta and may be a common features in GRBs.
 - SGRB: interaction with the kilonova ejecta
 - LGRB: interaction with the collapsing envelope
- **Can we find signatures of this lateral structure in cosmic GRBs?** Main difference: large distance/on-axis vs small distance/off-axis

- Note 1 : for SGRBs, this interaction can also explain the origin of GRB170817A (shock breakout) and the GW-GRB delay: see e.g. Bromberg et al. 2018).
- Note 2 : especially in LGRBs, this interaction is also discussed as a possible phase of neutrino emission.

SIGNATURES OF THE LATERAL STRUCTURE IN GRBS?

- The lateral structure may be inherited from the early propagation of the ejecta and may be a common features in GRBs.
- Can we find signatures of this lateral structure in cosmic GRBs?
 Part of the PhD project of R. Duque @ IAP

Puzzling features in the early X-ray afterglow (Swift/XRT)

24

SIGNATURES OF THE LATERAL STRUCTURE IN GRBS?

- The lateral structure may be inherited from the early propagation of the ejecta and may be a common features in GRBs.
- Can we find signatures of this lateral structure in cosmic GRBs? Part of the PhD project of R. Duque @ IAP

LATERAL STRUCTURE OF THE JET

- 170817: a unique multi-wavelength data set peak flux @ > 100 days
- Standard afterglow model (synchrotron from e⁻ accelerated at the FS)
 + lateral structure in the jet: good fits (late evolution: lateral expansion?)

- 170817: a unique multi-wavelength data set
- Standard afterglow model (synchrotron from e⁻ accelerated at the FS)
 + lateral structure in the jet: good fits (late evolution: lateral expansion?)

 Full calculation of the afterglow of a structured jet including SSC in Klein-Nishina regime
 Part of the PhD work of Clément Pellouin @ IAP

Radio lightcurve (3 GHz) Spectrum at the peak 10^{-25} 10^{-11} full_SSC full_SSC 10^{-13} $\nu F_{\nu} \left[\mathrm{erg} \cdot \mathrm{cm}^{-2} \cdot \mathrm{s}^{-1} \right]$ 10^{-27} 10^{-15} 10^{-28} 10^{-17} 10^{-19} 10^{-30} 10^{-31} 10^{-21} 10^{27} 10^{11} 10^{15} 10^{19} 10^{23} 10^{-3} 10^{0} 10^{1} 10^{2} 10^{7} Time [days] Frequency [Hz]

- Full calculation including SSC in Klein-Nishina regime
- TeV lightcurve peaks ~2 orders of magnitude below the HESS limit

Same afterglow seen less off-axis (~10°) becomes detectable by HESS
and could be detectable by CTAO at > 100 Mpc

 Same afterglow (same viewing angle) with a higher external density can become detectable

 Same afterglow (same viewing angle) with a higher external density can become detectable

 Same afterglow (same viewing angle) with a higher external density can become detectable

 Same afterglow (same viewing angle) with a higher external density can become detectable

 Same afterglow (same viewing angle) with a higher external density can become detectable

- Same afterglow (same viewing angle) with a higher external density can become detectable
- If a formation channel leading to fast mergers exists, these systems should be over-represented in the GW-AG sample, due to brighter afterglows (Duque et al. [FD] 2020)
- These systems may be the only ones detected at VHE: direct signature of high density environment
- Many arguments in favor of such systems: some SGRB afterglow fits, some SGRB low offset in host galaxy, early r-process enrichment, etc.
- A possible new constraint on the stellar physics in binaries

NEW MULTI-MESSENGER DETECTIONS?

170817 & COSMOLOGY: HO

- GW: degeneracy distance-inclination
- AG VLBI: constraint on inclination improves the measurement of H0

See discussion in Mastrogiovanni et al. [FD] 2021: building a sample with such multiple observations will be slow, but each new event has an impact.

- LVK: run O4 is starting
- What do population models including EM counterparts say?
- Best candidate: KN (quasi-isotropic emission in V-IR)
- If KN is detected: accurate position, multi-wavelength search

GW-detected BNS (O4): KN Magnitude @ peak (g,r,i,z)

KN rate above a given limit mag. (rlim)

« Bright » KN r<19 Rate does not evolve beyond O3

(normalization: assumes 10 GW-detected BNS per year in O4)

40

GW-detected BNS (O4): KN Magnitude @ peak (g,r,i,z)

KN rate above a given limit mag. (rlim)

Deeper search: rlim=20-21 Significant increase of the rate with improved GW sensitivity O4: several detectable KN per year O5: > 10 detectable KN per year

 $\textbf{Detectable} \rightarrow \textbf{Detected: strategy? (ZTF+LSST/Vera Rubin+follow-up telescopes...)}}$

(normalization: assumes 10 GW-detected BNS per year in O4)

GW-detected BNS (O4): viewing angle vs distance for a given limit magnitude

GW-detected BNS (O4): viewing angle vs distance for a given limit magnitude

GW-detected BNS (O4): viewing angle vs distance for a given limit magnitude

GW-detected BNS (O4): viewing angle vs distance for a given limit magnitude

45

Duque

GW-detected BNS (O4): viewing angle vs distance for a given limit magnitude

46

- A major challenge: from « detectable » to « detected » events.
- A key quantity: localization accuracy
- Associations during O4 should remain rare, best candidate = kilonova
- Other channels can be explored to study the post-merger physics:
 - GRB+KN
 - Orphan KN
 - Orphan AG
- In the future: large field-of-view/deep limit magnitude instruments should play a major role in this quest (observation cadence for LSST-Rubin?)
- Association GW bright short GRB (i.e. on-axis): small probability in O4, better in O5 and much better with Einstein Telescope

SVOM

- Sino-French mission, to be launched at the end of 2023 (P.I. J. Wei (China) & B. Cordier (France))
- A satellite with four instruments (gamma-rays, X-rays, visible) (Large fov /Narrow fov / Slew / Anti-Solar pointing)
- Complementary ground-based instruments (visible, near-infrared)
- Core program: gamma-ray bursts
- MM program multi-wavelength follow-up of GW, v alerts

Compared to Swift / Fermi: a smaller sample, but with well-characterized GRBs (prompt, afterglow, redshift).

GRB trigger

ECLAIRs 42-80 GRBs/yr

Compared to Swift / Fermi: a smaller sample, but with well-characterized GRBs (prompt, afterglow, redshift).

ECLAIRs 42-80 GRBs/yr

GRB trigger

ECLAIRs+GRM

Prompt GRB emission over 3 decades (4 keV-5.5 MeV)

Prompt emission

GWAC prompt visible emission in ~16% of cases

Compared to Swift / Fermi: a smaller sample, but with well-characterized GRBs (prompt, afterglow, redshift).

GRB trigger

ECLAIRs 42-80 GRBs/yr

ECLAIRs+GRM

Prompt GRB emission over 3 decades (4 keV-5.5 MeV)

Prompt emission

GWAC

prompt visible emission in ~16% of cases

Visible/NIR afterglow Photometric redshift

MXT

X-ray afterglow (>90% of GRBs after a slew)

Afterglow & distance

slew request: 36-72 GRB/yr

GWAC+C-GFT/F-GFT (Colibri)

Compared to Swift / Fermi: a smaller sample, but with well-characterized GRBs (prompt, afterglow, redshift).

GRB trigger ECLAIRs 42-80 GRBs/yr

ECLAIRs+GRM

Prompt GRB emission over 3 decades (4 keV-5.5 MeV)

Prompt emission

GWAC

in~16%

prompt visible emission

Visible/NIR afterglow Photometric redshift

MXT

X-ray afterglow (>90% of GRBs after a slew)

Afterglow & distance

slew request: 36-72 GRB/yr

GWAC+C-GFT/F-GFT (Colibri)

Follow-Up by other instruments (including very large telescopes) Redshift for 2/3 of the sample

SVOM

- Arcier, B., Atteia, J. L., Godet, O., et al. (2020) Detection of short high-energy transients in the local universe with SVOM/ECLAIRs, Astrophysics and Space Science, 365, 185
- Wang, J., Qiu, Y.-L., & Wei, J.-Y. (2020) A pilot study of catching high-z GRBs and exploring circumburst environment in the forthcoming SVOM era, Research in Astronomy and Astrophysics 20, 124
- Dagoneau, N., Schanne, S., Atteia, J.-L., Götz, D., & Cordier, B. (2020) Ultra-Long Gamma-Ray Bursts detection with SVOM/ECLAIRs, Experimental Astronomy 50, 91
- Bernardini, M. G., Xie, F., Sizun, P., et al. (2017) Scientific prospects for spectroscopy of the gammaray burst prompt emission with SVOM, Experimental Astronomy 44, 113
- Wei, J., Cordier, B., Antier, S., et al. (2016) The Deep and Transient Universe in the SVOM Era: New Challenges and Opportunities - Scientific prospects of the SVOM mission, arXiv e-prints arXiv:1610.06892

Frontispiece : Artist view of the SVOM satellite

SUMMARY

 GRBs are extreme phenomena emblematic of high-energy/multimessenger astrophysics, with potential applications in cosmology.

- 25 years after the discovery of the first afterglow (GRB 970228, BeppoSAX), new windows have open recently: TeV, GW
- A new generation of instruments is coming: more detections expected.

Among them: SVOM to be launched at the end of 2023.

THANKS!