

iP2

Status on Ho

Mickael **RIGAULT** | **KYOTO MARS 2023**

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n°759194 - USNAC)

erc | USNAC

International Conference on the Physics of the Two Infinities

m.rigault@ipnl.in2p3.fr

RIGAULT

Context | ACDM Works

Only 6 free parameters

Baryon Acoustic Oscillation

Clusters

...

Weak Lensing

Baryon Nucleosynthesis

Scolnic 2018

Context | ACDM Works, **except when it doesn't !**

Only 6 free parameters | *but "Λ" and "CDM"*

*H*_o Tension $\int \sigma$

Universe's expansion is too fast

Planck 2020

Heymans et al. 2020

Two approaches | Hubble-Lemaître Constant

Direct Method

$$H_0 \sim d_l / v_h$$

Redshifts & Distances

Indirect Method

$$H(\underline{z}) = H_0 \times \sqrt{\Omega_r (1 + \underline{z})^4 + \Omega_m (1 + \underline{z})^3 + \Omega_\Lambda (1 + \underline{z})^{3(1 + \underline{z})^4}}$$

Model & High redshift anchoring

Type Ia Supernova Cosmology

Type Ia Supernova Cosmology

Indirect determination of *H*₀

Ho Tension | SHoES vs. Planck

Are Supernovae & CMB in tension ? No!

Inverse Distance Ladder

Get independent distances for SNe Ia Sets the scale of the Universe at z~1 **"BAO."** "CMB" GOODS SCP 3000 CANDELS 2000 +CLASH 13.8 Gyr 5.5 Gyr 3.5 Gyr

BOSS DR12 | Alam et al. 2017

See also e.g.: Aubourg et al. 2015 • Macaulay et al. 2018

12

RIGAULT

Ho Tension | Early vs. Late

H₀ Tension | Change the model ?

H_o Tension | 5 σ

Universe's expansion is too fast

RIGAULT

Multiple images of the background quasar

Background quasar

Looking further into the past

Ho Tension | Systematics in strong lensing

RIGAULT

Ho Tension | +Mega-masers & KiloNova

RIGAULT

H₀ Tension | TRGB vs. Cepheid

Strong Lensing systematics actively studied

> Nearby so Sensitive to peculiar velocity correction

RIGAULT

The Progenitor issue | Astrophysical biases

High fraction of young stars

Rigault et al. 2020 Nicolas et al. 2021 Briday et al. 2022 Ginolin et al. *in prep*

 $lsSFR \propto \frac{\# Young Stars}{\pi}$ # Old Stars

22

Astrophysical Bias affecting H₀

RIGAULT

Rigault et al. 2015

3% bias on H_0

So a 2 km s⁻¹ Mpc⁻¹ shift

Total current SH0ES error budget **1.04 km s⁻¹ Mpc⁻¹**

SH0ES "corrected" \sim 71 ± 1.5 km s⁻¹ Mpc⁻¹

Rigault et al. in prep. | Rigault et al. 2015, 2020

SH0ES rebuttal

"If we **mimic the Cepheids selection** function and only take Hubble flow SNe Ia from *Spiral* hosts, *H*₀ reduces by 0.5%"

Riess et al. 2022 | Riess et al. 2016, 2019

Zwicky Transient Facility (ZTF) is acquiring ~1000 SNeIa per year at z<0.1 since 2018

Zwicky Transient Facility (ZTF) is acquiring ~1000 SNeIa per year at z<0.1 since 2018

ZTF

We will be observing during O4

Localization of GW170817 was smaller than ZTF FoV

Abbot et al. (2017), PRL 119, 161101

ZTF | Changing the scale of SN Cosmology

Smith, Rigault et

al.	in	pr	ер	
			26	

ZTF Sample Toward a self-consistant H₀

Measure "L_{SN}"

Calibrator Sample

Volume limited ZTF-SNeIa < 50 Mpc

Technique TRGB (doable in any galaxy)

Statistics: ~5 per year (~30 by end of ZTF)

No selection function since both volume limited samples Unique photometric system, no absolute photometric calibration issue only relative, which is way easier

RIGAULT

Hubble Flow Sample

Volume limited ZTF-SNeIa z<0.06 Mpc

ZTF detects, follows and classifies *all* SNe Ia in the northern sky up to z~0.06

Statistics: Already >800 acquired

The Hubble Tension

Many more points (e.g. 2022)

- SNeIa->SNII: de Jaeger+2022 | 75±5%
- Geometry+Cepheids: <u>Kenworthy</u>+2022 | 73±4%
- BAO+BBN: Schöneberg+2022 | $68 \pm 0.5\%$
- ...

Sensitive to peculiar velocity correction

m.rigault@ipnl.in2p3.fr

Rigault