

Tobias Golling

UNIVERSITÉ DE GENÈVE

The Large Hadron Collider (LHC)

Two objectives: – Higgs discovery – New phenomena

LHC interim evaluation

Physics beyond the SM is **not around the corner**

Slow-growth era of LHC: energy & luminosity

Opportunity ! Turning crank \rightarrow innovation

AILA	S Exotics S	Search	ies* -	95%	6 CL	pper Exclusion Limits	2	ATL	AS Prelimina
Status:	JUIY 2018						$\int \mathcal{L} dt =$	(3.2 – 79.8) fb ⁻¹	$\sqrt{s} = 8, 13$ Te
Мо	odel	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	Limit			Reference
ADD ($G_{KK} + g/q$	0 e, µ	1 – 4 j	Yes	36.1		7.7 TeV	n = 2	1711.03301
ADD r	non-resonant $\gamma\gamma$	2γ	-	_	36.7	S	8.6 TeV	n = 3 HLZ NLO	1707.04147
ADD C	ΩВН	-	2 j	-	37.0	th	8.9 TeV	<i>n</i> = 6	1703.09217
ADD E	3H high ∑ p⊤	$\geq 1 e, \mu$	≥ 2 j	-	3.2	th	8.2 TeV	$n = 6$, $M_D = 3$ TeV, rot BH	1606.02265
ADD E	3H multijet	-	≥ 3 j	-	3.6	th	9.55 TeV	$n = 6, M_D = 3$ TeV, rot BH	1512.02586
RS1 C	$G_{KK} \rightarrow \gamma \gamma$	2γ	-	-	36.7	KK mass 4.1 T	eV	$k/\overline{M}_{Pl} = 0.1$	1707.04147
Bulk F	$S G_{KK} \rightarrow WW/ZZ$	multi-chann	el		36.1	KK mass 2.3 TeV		$k/\overline{M}_{Pl} = 1.0$	CERN-EP-2018-1
u Bulk F	$S_{g_{KK}} \rightarrow tt$	1 e, µ	$\geq 1 \text{ b}, \geq 1 \text{J}$	2j Yes	36.1	K mass 3.8 Te	V	$\Gamma/m = 15\%$	1804.10823
2UED	/ RPP	1 e, µ	≥ 2 b, ≥ 3	j Yes	36.1	C mass 1.8 TeV		Tier (1,1), $\mathcal{B}(A^{(1,1)} \rightarrow tt) = 1$	1803.09678
SSM 2	$Z' \rightarrow \ell \ell$ $Z' \rightarrow \tau \tau$	2 e, μ 2 τ	_	_	36.1 36.1	mass 4.5	TeV		1707.02424
Lentor	phobic $Z' \rightarrow bb$	_	2 h	_	36.1				1805.09299
Leptor	phobic $Z' \rightarrow tt$	1 <i>e u</i>	> 1 h > 1 d	2i Ves	36.1			$\Gamma/m = 1\%$	1804 10823
SSM	$W' \rightarrow \ell v$	1 e. µ		Yes	79.8	"mass	5.6 TeV	17.00 - 270	ATLAS-CONE-2018
SSM I	$W' \rightarrow \tau v$	1 7	_	Yes	36.1	" mass 3 7 TeV	/		1801.06992
	$V' \rightarrow WV \rightarrow aaaa \mod e$	IB 0 <i>е.ц</i>	2.1	-	79.8	mass 4.15 T	eV	$g_V = 3$	ATLAS-CONE-2018
HVT	$V' \rightarrow WH/ZH$ model B	multi-chann	el		36.1	mass 2.93 TeV		$g_V = 3$	1712.06518
LRSM	$W'_R \to tb$	multi-chann	el		36.1	" mass 3.25 TeV			CERN-EP-2018-1
Cl qq	99	– 2 j –			37.0			21.8 TeV η ⁻ _{LL}	1703.09217
S CI ℓℓ q	Cl l l q q 2 e, µ				36.1			40.0 TeV η _{LL}	1707.02424
CI tttt	1	≥1 <i>e,µ</i>	≥1 b, ≥1 j	Yes	36.1	2.57 TeV		$ C_{4t} = 4\pi$	CERN-EP-2018-1
Axial-	vector mediator (Dirac DN	Λ) 0 e, μ	1 – 4 j	Yes	36.1	med 1.55 TeV		g_q =0.25, g_{χ} =1.0, $m(\chi) = 1$ GeV	1711.03301
5 Colore	ed scalar mediator (Dirac	DM) 0 e, µ	1 – 4 j	Yes	36.1	med 1.67 TeV		$g=1.0, m(\chi) = 1 \text{ GeV}$	1711.03301
$VV_{\chi\chi}$	EFT (Dirac DM)	0 e, µ	$1 J, \leq 1 j$	Yes	3.2	- 700 GeV		$m(\chi) < 150 \text{ GeV}$	1608.02372
Scalar	r LQ 1 st gen	2 e	≥ 2 j	-	3.2	Q mass 1.1 TeV		$\beta = 1$	1605.06035
Scalar	r LQ 2 nd gen	2μ	≥ 2 j	-	3.2	a mass 1.05 TeV		$\beta = 1$	1605.06035
Scalar	r LQ 3 rd gen	1 e,µ	≥1 b, ≥3 j	Yes	20.3	2 mass 640 GeV		$\beta = 0$	1508.04735
VLQ 7	$TT \rightarrow Ht/Zt/Wb + X$	multi-chann	el		36.1	mass 1.37 TeV		SU(2) doublet	ATLAS-CONF-2018
VLQ E	$3B \rightarrow Wt/Zb + X$	multi-chann	el		36.1	mass 1.34 TeV		SU(2) doublet	ATLAS-CONF-2018
YLQ 7	$\Gamma_{5/3}T_{5/3} T_{5/3} \rightarrow Wt + X$	2(SS)/≥3 e,	,μ ≥1 b, ≥1	Yes	36.1	_{5/3} mass 1.64 TeV		$\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$	CERN-EP-2018-1
VLQ Y	$Y \rightarrow Wb + X$	1 e, µ	≥ 1 b, ≥ 1	i Yes	3.2	mass 1.44 TeV		$\mathcal{B}(Y \to Wb) = 1, c(YWb) = 1/\sqrt{2}$	ATLAS-CONF-2016
VLQ E	$3 \rightarrow Hb + X$	0 e,μ, 2 γ	≥ 1 b, ≥ 1	j Yes	79.8	mass 1.21 TeV		κ _B = 0.5	ATLAS-CONF-2018
VLQ ($QQ \rightarrow WqWq$	1 e, µ	\geq 4 j	Yes	20.3	mass 690 GeV			1509.04261
2	d quark $q^* \rightarrow qg$	-	2 j	-	37.0	mass	6.0 TeV	only u^* and d^* , $\Lambda = m(q^*)$	1703.09127
2	d quark $q^* \rightarrow q\gamma$	1γ	1 j	-	36.7	mass	5.3 TeV	only u^* and d^* , $\Lambda = m(q^*)$	1709.10440
2	d quark $b^* \rightarrow bg$	-	1 b, 1 j	-	36.1	mass 2.6 TeV			1805.09299
2	d lepton l*	3 e, µ	-	-	20.3	mass 3.0 TeV		$\Lambda = 3.0 \text{ TeV}$	1411.2921
	d lepton v*	3 e, μ, τ	-	-	20.3	mass 1.6 TeV		$\Lambda = 1.6 \text{ TeV}$	1411.2921
	II Seesaw	1 e,µ	≥ 2 j	Yes	79.8	mass 560 GeV			ATLAS-CONF-2018
1	Majorana v	2 e, µ	2 j	-	20.3	mass 2.0 TeV		$m(W_R) = 2.4$ TeV, no mixing	1506.06020
	triplet $H^{\pm\pm} \rightarrow \ell \ell$	2,3,4 e, µ (S	S) –	-	36.1	tt mass 870 GeV		DY production	1710.09748
	triplet $H^{\pm\pm} \rightarrow \ell \tau$	3 e, μ, τ	-	-	20.3	** mass 400 GeV		DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$	1411.2921
	iop (non-res prod)	1 e,µ	1 b	Yes	20.3	in-1 invisible particle mass 657 GeV		$a_{non-res} = 0.2$	1410.5404
l t		_	_	_	20.3	ulti-charged particle mass 785 GeV		DY production, $ q = 5e$	1504.04188
∎ t	charged particles				2010				
Magne	charged particles etic monopoles	-	-	-	7.0	onopole mass 1.34 TeV		DY production, $ g = 1g_D$, spin $1/2$	1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown

†Small-radius (large-radius) jets are denoted by the letter j (J)

Constantly growing & cross-connecting

Success stories

ML@HEP pioneer:

Flavor tagging

Enabler:

Higgs, top, new phenomena,...

Long history of ML in flavor tagging

B. BRANDL⁺, A. FALVARD⁺⁺, C. GUICHENEY⁺⁺,
P. HENRARD⁺⁺, J. JOUSSET⁺⁺, J. PROFILL⁺⁺

<u>1992</u>: Started with an **MLP** @LEP <u>2005</u>: First ML b-tagging @hadron collider @D0 2007: CDF@Tevatron used NN 2012: ML @ATLAS: MV1 2015: **BDT** journey: MV2 2017: Back to NN: DL1 2017: CMS DL with DeepCSV 2019: CMS ParticleNet **<u>2020</u>**: Deep Sets 2022: GN1 (GNN) 2023: GN2 (Transformers) new training framework

Flexible multi-classification

Training independent from algorithm tuning $(f_c \& f_b)$

Extended to more classes

	bcq							
Ton	<mark>b</mark> qq							
ιορ	bq							
	cq							
	bb							
Higgs	СС							
	VV*→qqqq							
	bb							
Ζ	СС							
	qq							
W/	cq							
••	qq							
	g <mark>→bb</mark>							
	g→cc							
QCD	b							
	С							
	others							

Label

Category

Streamlining architecture

Improved performance

Easier training & optimization

Impact on physics

Evolving data representations in HEP

Physics-aware Al [the edge of science]

The difference between language models & PP?

We have a model

Invariance to transformation: contrastive learning

[JetCLR [2108.04253] (based on SimCLR Hinton et al.)]

$$s(z_i, z_j) = rac{z_i \cdot z_j}{|z_i||z_j|} = \cos heta_{ij}$$

Augmentation	$\epsilon^{-1}(\epsilon_s = 0.5)$	AUC	
none	15	0.905	
translations	19	0.916	
rotations	21	0.930	
soft+collinear	89	0.970	
all combined (default)	181	0.979	17

Encode physics into a GNN

[2303.13937]

Inject physics knowledge into AI

[1702.00748, 1711.02633]

Tree structure of sequential recombination jet algorithms as Recursive NN

- Symmetries [rotation, translation, permutation,...]
 - Lorentz layers [2006.04780, 2201.08187]
 - GNNs: permutation symmetry [Energy flow network, ParticleNet]
 - PELICAN [2211.00454]
- Auxiliary tasks: energy conservation,...
- Observable construction with ML [1902.07180]

ML interpretability for science

Science

 $h = \frac{2G}{c^4} \frac{1}{r} \frac{\partial^2 Q}{\partial t^2}$

Computer vision

???

Analytic models often generalize better than NN **Symbolic regression** as inductive bias

[Miles Cranmer – Hammers & Nails 2022] ²⁰

 $GNN \rightarrow PySR \rightarrow Learn masses + dynamics$

Predicted

Surrogate modeling

Fast Sim & Reco

Challenges:

- Fidelity, flexibility, portability
- Non-uniform geometry
 [FastCaloGAN, Geometry-aware]
- Sparse data
- Large dynamic range: tails
- Validation [2211.10295]
- Uncertainty
- Understanding inductive bias [GANplification]

Toolbox: generative models [Differentiable & fast]

Faces

[Karras et al., 2018]

VAEs, GANs, Flows, Diffusion,...

Images of calo showers

 $\hat{E}_{\text{GEANT}} = 5.0 \text{ GeV}$ $\hat{E}_{\text{GEANT}} = 10.0 \text{ GeV}$ $\hat{E}_{\text{GEANT}} = 19.9 \text{ GeV}$ $\hat{E}_{\text{GEANT}} = 49.8 \text{ GeV}$ $\hat{E}_{\text{GEANT}} = 94.6 \text{ GeV}$ $\hat{E}_{CaloFlow} = 5.0 \text{ GeV}$ $\hat{E}_{CaloFlow} = 10.0 \text{ GeV}$ $\hat{E}_{CaloFlow} = 19.9 \text{ GeV}$ $\hat{E}_{CaloFlow} = 49.7 \text{ GeV}$ $\hat{E}_{CaloFlow} = 94.3 \text{ GeV}$ 10^{-1}

Images \rightarrow Point cloud

Decouple modeling from detector geometry

- Addresses sparsity issue
- Promotes portable solutions
- Encode symmetries (inductive bias)

New on the market: point-cloud diffusion

Gradually add Gaussian noise (right-to-left=forward) Reverse "learn the noise" $1000 \rightarrow 100 \rightarrow \sim 20$ steps (over last ~year)

Transformer Encoder (TE) Block

[See also <u>2206.11898</u>] 27

Search for the Unknown

Traditional signal-driven approach SUSY, etc. Higgs Works great if you know $H \rightarrow ZZ^* \rightarrow 4l$ what you're looking for! \s = 7 TeV: Ldt = 4.5 fb around Z+iets t Ldt = 20.3 ft 20 Top 15 10 80 90 100 110 120 130 140 150 160 170 m_{4/} [GeV] W boson

Strategy breaks down as confidence in model decreases

Playing the lottery

How to maximize the discovery potential

Current approach is inefficient & incomplete

				_	- 1-	L			7/11/	77	$BSM \to SM_1 \times SM_1$		$BSM \to SM_1 \times SM_2$			$BSM \rightarrow complex$					
		e	μ	au	q/g	0	t	γ	Z/W	Н	q/g	γ/π^0 's	b		tZ/H	bH		$\tau q q'$	eqq'	$\mu q q'$	
	e	[37, 38]	[39, 40]	[39]	ø	ø	ø	[41]	[42]	ø	ø	ø	ø		ø	ø	ø	ø	[43, 44]	ø	
	μ		[37, 38]	[39]	ø	ø	ø	[41]	[42]	ø	ø	ø	ø		ø	ø	ø	ø	ø	[43, 44]	
	τ			[45, 46]	ø	[47]	ø	ø	ø	ø	ø	ø	ø		ø	ø	ø	[48, 49]	ø	ø	
	q/g				$\left[29, 30, 50, 51\right]$	[52]	ø	[53, 54]	[55]	ø	ø	ø	ø		ø	ø	ø	ø	ø	ø	
	b					[29, 52, 56]	[57]	[54]	[58]	[59]	ø	ø	ø		[<mark>60</mark>]	ø	ø	ø	ø	ø	
	t						[<mark>61</mark>]	ø	[62]	[<mark>63</mark>]	ø	ø	ø		[64]	[60]	ø	ø	ø	ø	
	γ							[65, 66]	[67-69]	[68, 70]	ø	ø	ø		ø	ø	ø	ø	ø	ø	
Z/W									[71]	[71]	ø	ø	ø		ø	ø	ø	ø	ø	ø	
H										[72, 73]	[74]	ø	ø		ø	ø	ø	ø	ø	ø	
1	q/g										Ø	ø	ø		ø	ø	ø	ø	ø	ø	
$_{\rm SM}$	γ/π^0 's											[75]	ø		ø	ø	ø	ø	ø	ø	
$I_1 \times$	b												[76, 77]		ø	ø	ø	ø	ø	ø	
SN	:																				
Î																					
BSI																					
	:																				

Rephrasing the problem:

Look for deviations from SM in model agnostic way

Cast a wide web

Inform future searches

Vast signature space **un**explored

Model-agnostic search portfolio

1. Unsupervised autoencoder-style outlier detection

2. Semi-supervised in-situ background modeling

Fabulous idea: outlier detection with autoencoders

Train on *normal* (=SM)

Poor reconstruction = *anomaly*

Challenges:

- Outlier in high-dimensional space
- Performance (e.g. anomaly metric dominated by mass)
- Add physics priors without becoming supervised

Jet level [<u>1808.08979</u>, <u>1808.08992</u>, <u>2007.01850</u>, <u>2301.04660</u>...] Event level [<u>1806.02350</u>, <u>2105.14027</u>...]

[NAE]

Learning high-D background templates*

[*Fidelity of simulation alone insufficient]

In-situ background modeling for bump hunt

200 GeV

200 GeV

Classification without labeling (CWoLa)

Maximize sensitivity to signal

Abandon notion of event label

Noisy labels to be S or B

Bump hunt [<u>1902.02634</u>] ATLAS analysis [<u>2005.02983</u>]

Beyond resonances e.g. symmetries [2203.07529]

Comparison of methods

Similar performance of methods

Study complementarity & sensitivity to # & *noisiness* of features

Quantifying search capability

Towards a discussion

Many more challenges

Evaluation of gen. models [Compare metrics 2211.10295]

[Ethical AI in Science] [e.g. 2211.02486]

& Social challenges

Fast-moving ML \leftrightarrow Slow Experiment time scale

ML@HEP competitive ↔ *Open Science* @ Experiment

Need faster concept-to-production cycle

& Opportunities

- Al as a *muse* to science
 - ML to suggest new theories [active learning]
- Human-in-the-loop Al
 - Optimal detector design assisted by AI
- Differentiable programming \rightarrow differentiable physics
- Data analysis in theory space [simulation-based inference]
- Diverse AI-assisted search portfolio [rigor/bias/automation]
- More use of GNNs & Transformers
- Impact of diffusion & foundation models relevance of language aspect? [Feynman diagrams?]

The HEP-AI ecosystem

- Workshops & long-term • collaborations (with industry)
 - Synergies & cross-pollination
 - Catalyst for R&D
 - Evaluate & compare
 - Community consensus
- Common benchmarks & metrics ٠
 - Top-tagging reference data
 - CaloChallenge
 - Anomaly challenges
 - JetNet

Journal of Brief Ideas Trending ideas All ideas About

Data Science @ 9 - 13 November 2015, CERN http://cern.ch/DataScienceLHC2

Create standalone simulation tools to facilitate collaboration between HEP and machine learning community

By Kyle Cranmer, Tim Head, jean-roch vlimant, Vladimir Gligorov, Maurizio Pierini, Gilles Louppe, Andrey Ustyuzhanin, Balázs Kégl, Peter Elmer, Juan Pavez, Amir Farbin, Sergei Gleyzer, Steven Schramm, Lukas Heinrich, Michael Williams, Christian Lorenz Müller, Daniel Whiteson, Peter Sadowski, Pierre Baldi

machinelearning 🛛 datascience 🚺 open data 📘 simulation

Discussions at recent workshops have made it clear that one of the key barriers to collaboration between high energy physics and the machine learning community is access to training data. Recent successes in data sharing through the HiggsML and Flavours of Physics Kaggle challenges have borne much fruit, but required significant effort to coordinate.

While static simulated datasets are useful for challenges, in the course of investigating new machine learning techniques it is advantageous to be able to generate training data on demand (e.g. Refs. 1, 2, 3). Therefore we recommend efforts be made to produce the ingredients required to facilitate such collaboration:

- Specific challenges for HEP experiments should be fully specified such that minimal domain-specific knowledge is required to attack them.
- Stand-alone simulators should be made open source. They should be developed to be easy to use without domain-specific expertise, while still being representative of real experimental challenges. Such a simulation will permit non-HEP researchere to generate realistic HEP datasets for training and testing. These simulators could range from truth-le

Hammers & Nails 2023 Edition sensor arrays. · Performance metr Machine Learning Meets Astro & Particle Physics solutions

(D) Sign in with ORCID

Authors

Kyle Cranmer, Tim Head, jean-roch vlimant, Vladimir Gligorov, Maurizio Pierini, Gilles Louppe, Andrey Ustvuzhanin, Balázs Kégl, Peter Elmer, Juan Pavez, Amir Farbin, Sergei Gleyzer, Steven Schramm, Lukas Heinrich, Michael Williams. Christian Lorenz Müller. Daniel Whiteson, Peter Sadowski, Pierre Baldi

Metadata

DOI 10.5281/zenodo.46864

Published: 26 Feb, 2016

Summary

- Continued success stories [e.g. object tagging]
- Transformative: automation & acceleration

 Surrogate modeling to efficiently model complex systems
- Inject physics into AI ⇔ Interpretability
- Innovation \rightarrow Exploitation

<u>Outlook</u>:

Tackle problems which were considered unsolvable

Backup

Invertible surrogates to solve inverse problem

Simulation-based inference: learn $p(\theta|x)$

accounting for latent variables [parton shower, detector effects,...]

Replace **computationally expensive numerical integrals** (MEM, NNLO event weights etc.) with a **regression** phase (ML)

[Image credit: Gilles Louppe]

v-Flows: Conditional Neutrino Regression

Cherry picked representative examples:

 \vec{r}_{r} 1.6 \vec{r}_{r} 1.6 \vec{r}_{T} Truth Neutrino \vec{r}_{T} miss + m_{W} Constraint 1.4 ν -FF 1.2 ν -Flows 1.0 0.8 0.6 0.4 0.2 0.0 \vec{r}_{T} and \vec{r}_{T} and **Conditional normalizing flow:** learn **conditional likelihood** over neutrino momenta assuming an underlying process (inductive bias)

Improve over traditional method

<u>2207.00664</u>

Generation from noise

Opportunity: optimal detector design

Need **design-conditional** model $p(x | \theta, D)$

Approximate $p(x | \theta, D)$ using **generative model**

- → Fast
- → Differentiable

Challenge:

p(x | D) without already exploring all design space D

Solution:

train local models as you optimize [2002.04632]

Detector design is a challenging frontier in ML@HEP Fine-tune human design \rightarrow discovery of novel designs

