International Conference on the Physics of the Two Infinities 2023/Mar/27-30

GRAINE* project: Cosmic Gamma-ray Observation by Balloon-Borne Emulsion Telescope

* GRAINE Gamma-Ray Astro-Imager with Nuclear Emulsion

Shigeki Aoki (Kobe Univ.) for GRAINE collaboration

Kobe University, Nagoya University, Okayama University of Science, Gifu University, Aichi University of Education and ISAS/JAXA

photo: GRAINE 2018 2018/Apr/26 am 6:33 Alice Springs, Australia

© http://astronomy.nmsu.edu/tharriso/ast536/ast536lecture3.html

All-sky map by Fermi Gamma-ray Space Telescope using nine years of data collected from 2008 to 2017

Image credit: NASA/DOE/Fermi LAT Collaboration

>5000 sources (FL8Y)

Unresolved issues in cosmic γ -ray bservation (GeV/sub-GeV band)

Image credit: NASA/DOE/Fermi LAT Collaboration

Nearby Galactic Center

Crowded by many gamma-ray sources &

44

diffused background

28

G.C. GeV Excess (dark matter ?)

Uncovering a gamma-ray excess at the galactic center

Image credits: Pavlov, G. G. et al. ApJ. 591, 1157

NASA/CXC/ASU/J. Hester et al.

contour IR(Spitzer)

Abdo et al., Science, 2010

SNR W44

color: 2-10GeV

y-ray (Fermi LAT)

Unresolved issues in cosmic γ -ray bservation (GeV/sub-GeV band)

Image credit: NASA/DOE/Fermi LAT Collaboration

G.C. GeV Excess (dark matter ?)

Uncovering a gamma-ray excess at the galactic center

SNR W44 Abdo et al., Science, 2010

contour IR(Spitzer)

Xie, F. et al. Nature 612, 658, (adapted in Nature 612, 641)

for γ -ray polarization, no positive report so far

Nuclear Emulsion

microscope view 10μm

Intrinsic position accuracy of ~50nm

e+/-

e-/+

Cross sectional view of an emulsion film Gamma-ray

Gamma-ray

Emulsion Film

before and after development process

Balloon-borne emulsion gamma-ray telescope

NIM A620(2010) pp.192-195

time

GRAINE roadmap

2004- Development on ground

S.Takahashi et al. NIMA 620, 192 (2010) K.Ozaki et al. NIMA 833, 165 (2016)

2011/Jun: 1st Balloon exp.

 Confirmation of feasibility H.Rokujo et al. NIMA 701, 127 (2013). S.Takahashi et al. PTEP 2015 043H01

Demonstration phase w/ 0.38m² 2015/May: 2nd Balloon exp.

- · Establishment of experimental flow
- Demonstration of the detector performance K.Ozaki et al., JINST 10, P12018 (2015)
 - S.Takahashi et al. PTEP 2016, 073F01
 - H. Rokujo et al. PTEP 2018, 063H01
 - S.Takahashi et al. Adv.Space Res. 62 2945-2953

2018/Apr: 3rd Balloon exp.

- Celestial source detection
 - H. Rokujo et al. JINST 14, P09009 (2019)
 - Y. Nakamura et al. PTEP 2021, 123H02
 - S.Takahashi et al. PTEP (2021) submitted

2023/Mar,Apr:

- Commissioning scientific observation
- Approved $2.5m^2 \times 2$ flights (= $5m^2$)
- \rightarrow 10m² aperture and longer duration flight (in future)

GRAINE 2011

- 2011/Jun/8
- Hokkaido, Japan
- Aperture 0.013m²
- 1.6hr@35km

GRAINE 2015

- 2015/May/12
- · Alice Springs, Australia
 - Aperture 0.38m²
- 11.5hr@36-37km

GRAINE 2018

- 2018/Apr/26
- Alice Springs, Australia
 - Aperture 0.38m²
- 14.7hr@35-38km

- · Alice Springs, Australia
- Aperture $5m^2 \rightarrow 2.5m^2$
- 24hr to observe Vela and Galactic Center

Small area of the real data from GRAINE2015

Vela pulsar imaging @GRAINE2018

13

GRAINE roadmap

2004- Development on ground

S.Takahashi et al. NIMA 620, 192 (2010) K.Ozaki et al. NIMA 833, 165 (2016)

2011/Jun: 1st Balloon exp.

 Confirmation of feasibility H.Rokujo et al. NIMA 701, 127 (2013). S. Takahashi et al. PTEP 2015 043H01

Demonstration phase w/ 0.38m² 2015/May: 2nd Balloon exp.

- · Establishment of experimental flow
- Demonstration of the detector performance K.Ozaki et al., JINST 10, P12018 (2015)
 - S.Takahashi et al. PTEP 2016, 073F01
 - H. Rokujo et al. PTEP 2018, 063H01
 - S.Takahashi et al. Adv.Space Res. 62 2945-2953

2018/Apr: 3rd Balloon exp.

- Celestial source detection
 - H. Rokujo et al. JINST 14, P09009 (2019)
 - Y. Nakamura et al. PTEP 2021, 123H02
- S.Takahashi et al. PTEP (2021) submitted

2023/Mar,Apr:

- Commissioning scientific observation
- Approved $2.5m^2 \times 2$ flights (= $5m^2$)
- \rightarrow 10m² aperture and longer duration flight (in future)

GRAINE 2011

- 2011/Jun/8
- Hokkaido, Japan
- Aperture 0.013m²
- 1.6hr@35km

GRAINE 2015

- 2015/May/12
- · Alice Springs, Australia
 - Aperture 0.38m²
- 11.5hr@36-37km

GRAINE 2018

- 2018/Apr/26
- Alice Springs, Australia
- Aperture 0.38m²
- 14.7hr@35-38km

- · Alice Springs, Australia
- Aperture $5m^2 \rightarrow 2.5m^2$
- 24hr to observe Vela and Galactic Center

realization of 10m² aperture telescope

- Mass-production emulsion gel and film and development process (converter film 1000m² and shifter film 100m²)
- Improvement of Hyper Track Selector
- New Pressure Vessel and Gondola
- New Multi Stage Shifter

Emulsion film production facility @Nagoya Univ.¹⁶

Gel prodution

Next balloon-borne experiment total emulsion film surface area ~600m² Oct 2021, Converter rehearsal @Mt. Norikura May 2022, Started mass-production

"30 times machine" is installed

realization of 10m² aperture telescope

- Mass-production emulsion gel and film and development process (converter film 1000m² and shifter film 100m²)
- Improvement of Hyper Track Selector
- New Pressure Vessel and Gondola
- New Multi Stage Shifter

realization of 10m² aperture telescope

- Mass-production emulsion gel and film and development process (converter film 1000m² and shifter film 100m²)
- Improvement of Hyper Track Selector
- New Pressure Vessel and Gondola

New Multi Stage Shifter

Large, Light, Thin (<0.3 atm)

Next model (2.5m² mounting)

> Consideration of various factors →Gondola weight per aperture area ~80kg/m² (75% lighter than previous model). Ring beams (position, number, shape) Ring edge (edge cutting) Suspension point (shape), strip plate (metern Bolt (diameter, number of bolts) Trusses (elimination, carting) Shell membrane (configuration) Airtight membrane (shape, original fabrication)

Gondola carrying cart

1st Flight model

19

realization of 10m² aperture telescope

- Mass-production emulsion gel and film and development process (converter film 1000m² and shifter film 100m²)
- Improvement of Hyper Track Selector
- New Pressure Vessel and Gondora
- New Multi Stage Shifter

•••	motion →		film pack		
	hone	eycomb ba	ase	$\bigcirc \bigcirc \bigcirc$	
	oller S A A A A A A A A A A A A A A A A A A A	croll n 1.25, 新型 2字介	nulti-sta	ge shifter 1st flight mode	
Size [m ²]	1.5 x 0.7	1.8 x 1.4	1		
Aperture [m ²]	0.38	1.25			1
# of stages (w/o fixed stg.)	3 <u>×1</u>	.3 4	1/3 1	leight ner	
Gap [mm] ()内は最終段間	1 (0.5) <u>×1</u>	0.5	1/3 0		
Weight [kg]	65	80	👗 apei	ture area	
Weight 1 25m ² -an [kg]	214 ×1/	2.7 80			

Scalable telescope assembling identical units

GRAINE2023 is now on going

Traffic

WA

Hangars in Balloon Launching Station at Alice Springs, Australia

SING MAD

ン空港着

スプリングス着

Gondora and main parts 23 in Sea Container and transshipped to Railroad

大型フォーク

中型フォーク

BLSスタッフの方にサポートしてもらいながら JAXAグループよりも1週早く準備作業を開始

Emulsion films via Air cargo & Cooling track

Film Installation (Shifter & Converter)

Crush Pad (paper honeycomb) 2

Pressure Vessel & Outside Components

Hanging & Radio Test with Launching Crane

GRAINE Payload is Almost Ready for Launch

GAP

Field of view transition in 24 hours

Vela

Galactic center

W4

18:00

mid

5:54

Local sidereal time

24hours

21:00

set 8:54

--------------------------------W44

Search for GeV γ -ray Pair Halo \rightarrow Constraints on IGMF

Summary & Prospects

GRAINE project

- Precise observation by balloon-borne emulsion gamma-ray telescope
- High angular resolution, Polarization sensitive, Large effective area

2018 Balloon experiment in Australia

- Confirmed overall performance by imaging Vela pulsar
- 6.3 times better PSF radius, 39 times better solid angle than Fermi-LAT

2023 Balloon experiment in Australia

- Start scientific observation by 2.5m² (6.5 times of GRAINE2018)
- higher statistics of Vela pulsar and detection of Galactic Center

Full scale scientific flight with 10m² aperture telescope

- Looking for longer duration flight @middle latitude
- SNR, Galactic center/plane, un-ID sources, Polarimetry, Burst events

backup

Detection principle

Angular Resolution

68% containment radius

PTEP 2021, 123H02

Y. Nakamura et al.

Fig. 1. Cross-sectional view of the emulsion chamber used in GRAINE2018.

Fig. 6. Distribution of the angle difference between the expected and reconstructed gamma-ray directions.

Energy Resolution

26% error for 32 MeV/c electron

27% error for π^0 mass peak

90 100

GRAINE 2018, Flight data analysis, Timestamper, Timestamping

39

Pressure vessel

Other observation @GRAINE2018

Atmospheric γ-ray measurements

✓ BG and detector response understanding

× Atm. γ-ray physics (Primary, Solar activity, Geomagnetism, Atmosphere, Interaction, Secondary)

- Flux and East-West effect in Sub-GeV
- Comparison w/ atm. v flux calculation
 Contribution to Neutrino physics
- Advantage by balloon-borne experiments

Search for hadron showers over the detector area

Missions @ sub-GeV/GeV band

	Fermi-LAT	GRAINE	ASTROGAM	AMEGO	HARPO
Converter & Tracker	W (0.03/0.18Xo) & SSD	Emulsion	Double-sided SSD	Double-sided SSD	Gas TPC
Energy Range	20 MeV – 300 GeV	10 MeV – 100 GeV	10 MeV – 3 GeV _(pair)	10 MeV – 5 GeV _(pair)	MeV – GeV
Angular Reso. @100MeV	6.0°	1.0°	1.5° (requirement)	2°	0.4°
Angular Reso. @1GeV	0.9°	0.1°	0.2° (requirement)	1°	out of study
Polarization	under study	Yes	?	?	Yes
Apparture Size	1.96m² (eff. 0.25m ² @100MeV)	10m² (eff. 2.1m ² @100MeV)	0.9m ²	0.9m ²	? (eff. 0.03m ² w/ 10kg Ar)
Launch	2008	2023	Not Yet Approved (2037~)	Not Yet Approved (2028~)	No plan
Flight by	NASA	JAXA balloon	ESA?	NASA?	No plan

Multi-stage shifting timestamper

Roller-driven model	Size [m ²]	1.5 x 0.7	2.0 x 1.5
✓ Large & Light	Aperture area [m ²]	0.38	1.25
 Long duration/High t resolution 	# of stages (w/oIF)	3 —	→ 4
✓ Low <i>E</i> threshold	Gap b/w stages[mm](^{Final} stages)	1 (0.5) <mark>×1</mark>	2 0.5
	Weight [kg]	65	80
2 3	Weight w/ 1.25m ² -ap [kg]	214 ×1/	2.7 80
Co-developed			1000

w/ Mitaka Kohki

		- 62
CN w/ 1.25m ² -ap [W]	82 <u>×1</u>	20
Consumption [W]	25	20
Weight w/ 1.25m ² -ap [kg]	214 ×1/	2.7 80

1/3 of conventional weight per aperture area

1m

2nc

4th

1.25m

<u>Development history</u> Aug. 2014, Started Mar. 2015, Prototype(1-stage) Feb. 2017, Pipe-roller Feb. 2019, Prototype(5-stages) Mar. 2020, 1st Flight Model Feb. 2021, 2nd & 3rd FMs Jul. 2021, 4th FM

Developments of the emulsion film pack CFRP backing, L-sized vacuum packing, Envelope, Friction(PTFE), Elongation(FIXELON®+SUS foil)

1st Flight Model

Total aperture area of 5m²

3rd

47

Next

$2.5m^2$ telecope $\times 2$ were ready to export

Galactic center region, detection sensitivity

50

Simulation of GeV γ -ray excess at galactic center regio w/ high angular resolution

Vela pulsar, polarization sensitivity

52

Alice Springs # of crosses of a source in a field of view of the telescope Apr. 15th, 19:39(ACST) culmination, 21.6deg zenith with diurnal rotation (roughly corresponding to flight days) 16:24–22:54 (6.5h/cross) w/in 45deg zenith, 14:58 – 24:20(9.4h/cross) w/in 60deg zenith

W44 detection sensitivity

2.27 0.42 /F 2Fh /analas) w/in AF do = ranith 2.10 0.40/7 Fh /analas) w/in Codo = ranith

Sensitivity to transient sources

