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Neutrinos: what we know

* Three flavours weakly interacting neutral leptons (+ their antiparticles)
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* They are massless in the Standard Model
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* They are massless in the Standard Model

They come from different sources and their energies span 16 orders of magnitude
arxiv:1207.4952

From space:

Human-made:
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Neutrinos: what we know (2)

 We know they have mass because they oscillate

P(v, »v,)

P(v, - )

Neutrino Oscillations
e First predicted in 1957 (Pontecorvo)

» Solar neutrino problem (Davis/Bahcall) in 1968

* First evidence of neutrino oscillation (Super-Kamiokande) in 1998

oscillation in solar, atmospheric, reactor, accelerator neutri 3
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Neutrinos: what we know (2)

 We know they have mass because they oscillate

P(v, »v,)

P(v, - )

* Oscillations due to mixing (as quark sector):

e Int " fl tat Ve Uel UeZ Ue3 V1

Nnteract as rlavour states VM _ U,lll U,uZ U,u3 Vv,

° Propagate as mass states v
3

V
* Mass states # flavour states t UT1 UTZ UT3
flavour mass

4
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Neutrinos: what we know (2)

 We know they have mass because they oscillate

v

Three mixing angles 61,,03,0,3 One complex CP-violating phase O¢p

cosf,,cos0, sinf;,c0s0; 3 sinf,ze~ocp
—sinf;,c0s0,3 — €0sO;,5inB;35in0,3e¢P  cosh;,c0s0,5 — sinb;,Sinf;3sind,3e9cP  cosh;3sinbys
sinfy,sinf,3 — c0sO;,5inf;3c0s0,3e9cP  —cosh;,sinf,; — sinby,sinf;3c0s6,3€"9€P  cosh;3cos,3
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Neutrinos: what we know (3)

Interplay between neutrino energy and travel distance —
different experiments sensitivity to oscillation and mixing parameters

2-flavour ¥ PRYSICS Z Zuz)L(M)

appearance P, (LE) = sin?20sin? [ 1.27 m-ie

probability va-up (LLE) = sin"26sin E(GeV)

EXPERIMENT

Experiment Dominant Important
Solar Experiments 012 Am%l , 013
Reactor LBL (KamLAND) Am3, 012 , 013
Reactor MBL (Daya-Bay, Reno, D-Chooz) 013, |Am3 3o
Atmospheric Experiments (SK, IC-DC) 023,| Am3; 35/, 013,6cp
Accel LBL v,,v,, Disapp (K2K, MINOS, T2K, NOvA) |Am§1,32|, 023
Accel LBL v,,v, App (MINOS, T2K, NOvA) dcp 013 , O3

Experiments contributing to present determination oscillation parameters - RPP2020 6
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Neutrinos: what we don’t know

Precise determination of mass
differences and mixing parameters

Are they their own
’ antiparticle?
What is their mass ' ! ‘ Are there sterile

ordering? neutrinos?

What are their
masses?

Can they explain
matter/antimatter asymmetry?



Neutrino Oscillation Experiments

Precise determination of mass
differences and mixing parameters

What is their mass Are there sterile
ordering? neutrinos?

Can they explain
matter/antimatter asymmetry?



Accelerator Neutrino Oscillation Experiments

e (Can design a multi-purpose neutrino experiment by combining
1. An intense neutrino beam
2. A baseline tuned for sensitivity to mixing/oscillation parameters
3. Large scale, cutting edge detector technology

e Sensitivity to neutrinos from additional sources, e.g.:

Accelerators The atmosphere Outer space
LA 1

[ =N e 'e
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1




(\ "
DUNE’s approach

» OCP and matter effects impact v and v oscillation probabilities differently

» Along baseline and a high intensity wide band neutrino beam maximise
sensitivity to CP violation and mass ordering

* OCP and matter both affect observed v, ,, and v, ,, spectra
* DUNE can break the degeneracy

0.14-  Neutrinos ] Sep = -2 0.14

1285 km
Normal Ordering 0 Boe=i0
Sep =12

Antineutrinos Ws, = -w2

1285 km
Normal Ordering Dsc" it
Sep =12

P(v, = Ve)

2 3 4 5678 530 1 2 3 4 5678 10
Neutrino Energy (GeV) Neutrino Energy (GeV)
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DUNE’s approach (2)

» OCP and matter effects impact v and v oscillation probabilities differently

» Along baseline and a high intensity wide band neutrino beam maximise
sensitivity to CP violation and mass ordering
* OCP and matter both affect observed v, ,, and v, ,, spectra

* DUNE can break the degeneracy

Fermilab

PIP-II
Proton (\
Accelerator

1.2 (2.4) MW 11
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DUNE’s approach (3)

» Characterise vﬂ/ﬁ source, measure flux with sophisticated near detector

» Look forv, /v, disappearance and v, /V, appearance at a far detector
Four Large (17 kton) detectors

» 1.5 km underground site to suppress cosmic ray muon background

i Fermilab

\{
Ne? aplet 12
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A phased approach

PHASE |

 Two Far Detector modules

e 1.2 MW proton beam

 Three near detectors including
temporary muon spectrometer
(TMS)

Fermilab
1.2 MW

<
ar de’tedo
e
N comP'e” 13
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A phased approach

PHASE | PHASE Il
 Two Far Detector modules  Four Far Detector modules
e 1.2 MW proton beam e 2.4 MW proton beam
 Three near detectors including upgrade (most intense
temporary muon spectrometer neutrino beam in the world)
(TMS)  Full Near Detector suite
(TMS replaced)
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Liquid Argon Time Projection Chamber (LArTPC)

* Use scintillation and ionization O wire oanes
to find 3D position of particles uvw

and interactions il X /
yo©
* Drift charge recorded by s - a8
several readout (RO) wire ygwwg ﬁ 7] // \\
planes, with different ! &g@»‘*ﬂi& - /- \
orientations, forming images o i@yy S A \
. . 14
incoming v // \\
* Light collected by photon Hiauid argon TPC 7 [ \

detection system

15
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LArTPC images

 LArTPC technology

DUNE:ProtoDUNE-SP Run 5779 Event 12360

10.0g combines tracking and
5000 75 T calorimetry
C . . . .
. %JQ 50 © ° Exquisite 3D imaging
O N ‘ N capabilities over large
4500 \proton 25
// ’ = volume detectors
(O]
fooamicon 0.0 2 - excellent particle ID
4000 10 Kd1 5 5:
0 100 200 300 400 —e20 and energy reco
Wire Number capabilities
3 GeV ™t from ProtoDUNE-SP Spatial resolution ~ mm
H4 beamline — charge exchange Time resolution 14 ns

16
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The DUNE Far Detector

 Four 17 kton modules
e Modules 1, 2 and 3 liquid argon TPCs
* Module 4: “Module of Opportunity” — Expand physics scope

Several technologies under
consideration

17



The DUNE Far Detector

ticl®
ged &
« Four 17 kton modules Won
\ scintillation

* Modules 1, 2 and 3 liquid argon TPCs // ight
*  Module 4: “Module of Opportunity” 127 nm
350 nm \ Dichroic Filter
\ LAr
; 30 1M X wis plate

Reflective surface

Many technology upgrades
since first LArTPCs

e.g. DUNE photon detection
system based on X-ARAPUCA

light trap

C. Brizzolari et al 2021 JINST 16 P09027

18
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The Horizontal Drift Far Detector

« Technology validated across multiple
neutrino experiments

* TPCsize 12.0 mx14.0 mx58.2 m

e Drift length 3.5 m, field 500 V/cm

 Modular wire-based charge readout

e 4 drift volumes defined by 5 arrays of
anode and cathode planes

Photon detection system

— shift light to visible spectrum

— Trap photons and transport to silicon
photomultipliers

19



The Vertical Drift Far Detector

e Two drift volumes 3x3 m2 PCB Anode 2 x 6.5-m vertical drift
* longer drift (6-7 m) '
 Simpler to construct —more
efficient use of LAr volume N Electronics
« PCB-based charge readout M

Photon detectors
— Integrated on cathode plane
and on the field cage walls
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DUNE Far Detector prototypes at CERN

e 1/30%™ of a FD module fiducial volume
* Real-size readout elements, scalable to FD

— Validate technology in charged particle beam
0.3-7 GeV and cosmic rays

Successful operation between 2018 and 2020
» Met or exceeded DUNE requirements

Upgraded ProtoDUNE-HD test new techniques and
components, and take more beam data at low
ProtoDUNE Single Phase momentum

arxiv:2007.06722
21
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DUNE Far Detector prototypes at CERN (2)

e Adual phase liquid-gas argon design was
tested at CERN between 2019 and 2020

* Validated large-scale use of PCBs and
proved longer vertical drift possible

— Valuable insight led to new vertical drift
concept

Upgraded ProtoDUNE-HD and ProtoDUNE-
VD to start operation at CERN Neutrino
Platform in 2023

ProtoDUNE Vertical Drift, and me

22



The DUNE Near Detector (Phase |)

Observed v, energy spectrum at the FD:

N(v,) = Flux X Cross section X Detector response X Oscillation probability

e Sophisticated ND to understand neutrino source, characterise unoscillated beam

Temporary muon
ND-LAr (to match FD) spectrometer SAND (Beam monitor) 23



The DUNE Near Detector (Phase Il)

Observed v, energy spectrum at the FD:

N(v,) = Flux X Cross section X Detector response X Oscillation probability

* Sophisticated ND to understand neutrino source, characterise unoscillated beam

ND-GAr (contain muons,
ND-LAr (to match FD) widen physics scope) SAND (Beam monitor) 24
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The PRISM concept

* Want to extrapolate oscillated FD flux from flux measured at ND

 Asthe ND moves off axis, the energy spectrum shifts downwards

e Off-axis measurements reduce cross-section and v energy uncertainties

* Different off-axis spectra can be combined into model-independent data-driven

prediction of oscillated spectrum at the FD /L

25m 8
E N o
Fr <
o /\ 15 m J:P
o

v Energy 10m

/¥ 5 m

/f\ oOm
v Energy 25



ProtoDUNE-ND (ArgonCube 2x2)

A modularized LArTPC demonstrator in the Fermilab NuMI| Beam
Smaller but complete version of ND-LAr module (0.7x0.7x1.4 m3)

Pixelated

Anode Tile .,
(70x70 pixels) .

LArPix

ArCLight Tile - Pixelated charge readout

1.40m

Two ARAPUCA-based
photon detection

systems being tested
LCM (left)

ArCLight (right)

Resistive Field Sheet -

26
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DUNE physics programme

' M dering. O fant Sensitivity to low energy neutrinos
ass orderin octan .
& Y23 — supernova, solar neutrinos

‘ High precision 6CP ‘ Low background |
— sensitivity to BSM physics

E.g. baryon number violation

High precision measurements
of Sin2923, Sin2613, Amgz

.‘O Study v, sector

lomplementarity with Hyper-Kamiokande — different beam, baseline, tech
—> Different interactions, parameter space and systematics 27

“ Atmospheric neutrino oscillation

Neutrino physics and more (e.g.
dark matter searches) in the ND
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Neutrinos from Core Collapse Supernova

* Over 99% of all gravitational binding energy
of collapsed core emitted as neutrinos

e Flavour content and spectra change
throughout the phases of the core collapse

40 kton argon, 10 kpc

» Use neutrinos to study collapse mechanism,

time evolution, black hole formation 9 b | 1 Nematordenma
% i —+— Inverted ordering
G SOF |
» First particles to reach Earth: pointing sof- | |
S — T
information in multi-messenger astronomy sz N T
E L ; T T
10 4 '
1-3 Galactic Core Collapse SN/100 years S P N
DUNE FD TDR: arxiv:2002.03005.pdf Time (seconds)

DUNE has unigue sensitivity to electron-flavour neutrinos 28
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Physics Beyond the Standard Model

* Baryon number violation, dark matter searches, sterile neutrinos, etc.

po et 3 3
Example: proton decay %T X "": 0 /P%;_ _J

- F— wE 3
» Underground location G o SS— : T
> Large fiducial mass et u ”"E o oA
» Imaging capabilities Kkt -t E
p— KV z : - . E
(dominant SUSY GUT mode) " Proton éeca;ever?t " T Atmos v:CCO\E”JObackngoﬂ>

wire
* |dentify kaon by dE/dx and decay products
* Main background: atmospheric neutrinos

29
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Status and timeline

» 2029 Start of Science
(First two Far Detector modules)

Atmospheric nu, astrophysics

> 2031 Start of Phase |

LBL, atmospheric nu, astrophysics

North detector cavern

Photo by Matt Kapust, SDSTA — 19 Jan 2023 » 2037-2038 Start of Phase Il

* FD site excavation over half complete Full physics scope
* Beamline design is almost 2/3
completed and on track

* Facilities final design complete 30
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DUNE Phase |

e Determine mass

Mass ordering CPV ordering (3-5y)
| DUNE MO Sensitivity 4: DUNE CPV Sensitivity
| All Systematics o mati . . .
10_ Nor?:altOrd;ring 3-5:_:::ri|y:|ti)r::r‘i=:g ¢ 30- CP VlOlatIOﬂ |f
I :Scp='"/2 2
8l 3f P OCP = — 7'[/2
2.55— (4-6y)
|N?< 6_ |2< 25_ /, « .
St aP........... [ * Precision
at 1.55— measurement of
e 4. Phase I: 5, = -7/2 C y Phase | . .
- Phase I: 100% of 5, values 15_ ,/’/ Start at 1.2 MW OSC|”at|0n
e e T e parameters
N N |||..I....I.yunnlr:uu.uluuuu c|/|..I....I...-I....I....I....I....
4 5 6 7 0 1 2 3 4 5 6 7 e .
Years Years d FU” Sen5|t|V|ty to

Need phase |l to achieve full physics potential SN neutrinos

31
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DUNE Phase || « Most precise measurement of 8CP,
no matter the true values of

unknown parameters (7-16°

7
- DUNE CPV Sensitivity ]l phase Il by 6 years

- All Systematics B rhase reSO| UtiO n)

6—Normal Ordering
- 50% of 5, values

Start at 1.2 MW

== A e * 50 CP violation discovery sensitivity
over 50% 6CP values (11y)

* Independent measurement of
sin®203

* Sensitivity to 8,3 octant

e Test three-flavour paradigm

World-leading sensitivity to BSM
physics and astrophysics

32
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The DUNE Collaboration

* More than 1300 collaborators
* More than 200 institutions
* More than 30 countries (plus CERN)

DUNE CM January 2023




Summary

DUNE is a next generation neutrino experiment

* Long baseline, most intense neutrino beam in the world, large-scale state-of-
the-art detector technology, complementarity with Hyper-Kamiokande

Simultaneously measure all parameters
governing v; — v3 and v, — v3 mixing in
single experiment, without external
constraints

Mass ordering, SN neutrinos and
precision measurements in phase |
Full physics potential in phase I

Exciting times ahead!

34






