The Deep Underground Neutrino Experiment

Current status and physics potential

Maria Brigida Brunetti on behalf of the DUNE Collaboration

30 March 2023 / International Conference on the Physics of the two Infinities / Kyoto

WARWICK THE UNIVERSITY OF WARWICK

Background image credits: SURF

Neutrinos: what we know

• Three flavours weakly interacting neutral leptons (+ their antiparticles)

• They are massless in the Standard Model

Neutrinos: what we know

• Three flavours weakly interacting neutral leptons (+ their antiparticles)

• They are massless in the Standard Model

They come from different sources and their energies span 16 orders of magnitude arxiv:1207.4952

Human-made: Accelerators Reactors

From space: Supernovae Cosmic sources The Sun The Atmosphere

Neutrinos: what we know (2)

• We know they have mass because they *oscillate*

Neutrino Oscillations

- First predicted in 1957 (Pontecorvo)
- Solar neutrino problem (Davis/Bahcall) in 1968
- First evidence of neutrino oscillation (Super-Kamiokande) in 1998

$\nu, \bar{\nu}$ oscillation in solar, atmospheric, reactor, accelerator neutrinos 3

Neutrinos: what we know (2)

• We know they have mass because they oscillate

- Oscillations due to *mixing* (as quark sector):
 - Interact as flavour states
 - Propagate as mass states
 - Mass states \neq flavour states

 $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$ flavour PMNS matrix mass

Neutrinos: what we know (2)

• We know they have mass because they *oscillate*

Three mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$ One complex CP-violating phase δ_{CP}

 $\begin{aligned} & \sin\theta_{12}\cos\theta_{13} & \sin\theta_{13}e^{-i\delta_{CP}} \\ & \cos\theta_{12}\cos\theta_{23} - \sin\theta_{12}\sin\theta_{13}\sin\theta_{23}e^{i\delta_{CP}} & \cos\theta_{13}\sin\theta_{23} \\ & -\cos\theta_{12}\sin\theta_{23} - \sin\theta_{12}\sin\theta_{13}\cos\theta_{23}e^{i\delta_{CP}} & \cos\theta_{13}\cos\theta_{23} / 2 \end{aligned}$

 $\begin{aligned} \cos\theta_{12}\cos\theta_{13} \\ -\sin\theta_{12}\cos\theta_{23} - \cos\theta_{12}\sin\theta_{13}\sin\theta_{23}e^{i\delta_{CP}} \\ \sin\theta_{12}\sin\theta_{23} - \cos\theta_{12}\sin\theta_{13}\cos\theta_{23}e^{i\delta_{CP}} \end{aligned}$

PMNS matrix

Neutrinos: what we know (3)

Interplay between neutrino energy and travel distance → different experiments sensitivity to oscillation and mixing parameters

EVLEVINENT	EXP	ER	IM	EN	T
------------	-----	----	----	----	---

Experiment	Dominant	Important
Solar Experiments	θ_{12}	$\Delta m^2_{21}\;, heta_{13}$
Reactor LBL (KamLAND)	Δm^2_{21}	$ heta_{12} \;, heta_{13}$
Reactor MBL (Daya-Bay, Reno, D-Chooz)	$ heta_{13}, \Delta m^2_{31,32} $	
Atmospheric Experiments (SK, IC-DC)	-) - ·	$ heta_{23}, arDelta m_{31,32}^2 , heta_{13}, \delta_{ m CP} $
Accel LBL $\nu_{\mu}, \bar{\nu}_{\mu}$, Disapp (K2K, MINOS, T2K, NO ν A)	$ \Delta m^2_{31,32} , heta_{23} $,
Accel LBL $\nu_e, \bar{\nu}_e$ App (MINOS, T2K, NO ν A)	$\delta_{ ext{CP}}$	$ heta_{13} \;, heta_{23}$

Experiments contributing to present determination oscillation parameters - RPP2020

Neutrinos: what we don't know

Precise determination of mass differences and mixing parameters

What are their masses?

What is their mass ordering?

Are they their own antiparticle?

Are there *sterile* neutrinos?

Can they explain matter/antimatter asymmetry?

Neutrino Oscillation Experiments

Precise determination of mass differences and mixing parameters

What are their masses?

What is their mass ordering?

Are they their own antiparticle?

Are there *sterile* neutrinos?

Can they explain matter/antimatter asymmetry?

Accelerator Neutrino Oscillation Experiments

- Can design a multi-purpose neutrino experiment by combining
 1. An intense neutrino beam
 2. A baseline tuned for sensitivity to mixing/oscillation parameters
 - 3. Large scale, cutting edge detector technology
- Sensitivity to neutrinos from additional sources, e.g.:

DUNE's approach

- \succ δ CP and matter effects impact ν and $\bar{\nu}$ oscillation probabilities differently
- A long baseline and a high intensity wide band neutrino beam maximise sensitivity to CP violation and mass ordering
 - δ CP and matter both affect observed $v_{e/\mu}$ and $\bar{v}_{e/\mu}$ spectra
 - DUNE can break the degeneracy

DUNE's approach (2)

- \succ δ CP and matter effects impact ν and $\bar{\nu}$ oscillation probabilities differently
- A long baseline and a high intensity wide band neutrino beam maximise sensitivity to CP violation and mass ordering
 - δCP and matter both affect observed $v_{e/\mu}$ and $\bar{v}_{e/\mu}$ spectra
 - DUNE can break the degeneracy

DUNE's approach (3)

SURF

- > Characterise $v_{\mu}/\overline{v_{\mu}}$ source, measure flux with sophisticated *near detector*
- ► Look for $\nu_{\mu}/\overline{\nu_{\mu}}$ disappearance and $\nu_{e}/\overline{\nu_{e}}$ appearance at a *far detector* Four Large (17 kton) detectors
- > 1.5 km underground site to suppress cosmic ray muon background

Far detector modules

Fermilab

Near detector

A phased approach

PHASE I

- Two Far Detector modules ٠
- 1.2 MW proton beam ٠
- Three near detectors including ۲ temporary muon spectrometer (TMS)

SURF

Far detector modules

Fermilab

DUNE

1.2 MW

Near detector complex

A phased approach

PHASE I

- Two Far Detector modules
- 1.2 MW proton beam
- Three near detectors including temporary muon spectrometer (TMS)

SURF

PHASE II

Far detector modules

- Four Far Detector modules
- 2.4 MW proton beam
 upgrade (most intense
 neutrino beam in the world)

Near detector complex

Full Near Detector suite (TMS replaced)

Fermilab

Liquid Argon Time Projection Chamber (LArTPC)

- Use scintillation and ionization to find 3D position of particles and interactions
- Drift charge recorded by several readout (RO) wire planes, with different orientations, forming images
- Light collected by photon detection system

DUN

LArTPC images

3 GeV π^+ from ProtoDUNE-SP H4 beamline – charge exchange

LArTPC technology combines tracking and arge/tick/channel (ke) calorimetry

- Exquisite 3D imaging capabilities over large volume detectors
 - \rightarrow excellent particle ID and energy reco capabilities

Spatial resolution ~ mm Time resolution 14 ns

The DUNE Far Detector

- Four 17 kton modules
 - Modules 1, 2 and 3 liquid argon TPCs
 - Module 4: "Module of Opportunity" ----

Expand physics scope

Several technologies under consideration

The DUNE Far Detector

- Four 17 kton modules
 - Modules 1, 2 and 3 liquid argon TPCs
 - Module 4: "Module of Opportunity"

Many technology upgrades since first LArTPCs e.g. DUNE photon detection system based on X-ARAPUCA light trap C. Brizzolari et al 2021 JINST 16 P09027

The Horizontal Drift Far Detector

- Technology validated across multiple neutrino experiments
- TPC size 12.0 m×14.0 m×58.2 m
- Drift length 3.5 m, field 500 V/cm
- Modular wire-based charge readout
- 4 drift volumes defined by 5 arrays of anode and cathode planes

Photon detection system

- \rightarrow shift light to visible spectrum
- \rightarrow Trap photons and transport to silicon photomultipliers

The Vertical Drift Far Detector

- Two drift volumes
- longer drift (6-7 m)
- Simpler to construct more efficient use of LAr volume
- PCB-based charge readout

Photon detectors

→ Integrated on cathode plane and on the field cage walls

DUNE Far Detector prototypes at CERN

ProtoDUNE Single Phase

arxiv:2007.06722

- 1/30th of a FD module fiducial volume
- Real-size readout elements, scalable to FD

 \rightarrow Validate technology in charged particle beam 0.3-7 GeV and cosmic rays

Successful operation between 2018 and 2020 → Met or exceeded DUNE requirements

Upgraded ProtoDUNE-HD test new techniques and components, and take more beam data at low momentum

DUNE Far Detector prototypes at CERN (2)

ProtoDUNE Vertical Drift, and me

- A dual phase liquid-gas argon design was tested at CERN between 2019 and 2020
- Validated large-scale use of PCBs and proved longer vertical drift possible
- → Valuable insight led to new vertical drift concept

Upgraded ProtoDUNE-HD and ProtoDUNE-VD to start operation at CERN Neutrino Platform in 2023

The DUNE Near Detector (Phase I)

Observed v_e energy spectrum at the FD:

 $N(v_e) = \text{Flux} \times \text{Cross section} \times \text{Detector response} \times \text{Oscillation probability}$

Sophisticated ND to understand neutrino source, characterise unoscillated beam

spectrometer

SAND (Beam monitor) 23

The DUNE Near Detector (Phase II)

Observed ν_e energy spectrum at the FD:

 $N(v_e) = \text{Flux} \times \text{Cross section} \times \text{Detector response} \times \text{Oscillation probability}$

• Sophisticated ND to understand neutrino source, characterise unoscillated beam

ND-LAr (to match FD)

ND-GAr (contain muons, widen physics scope)

SAND (Beam monitor) 24

The PRISM concept

- Want to extrapolate oscillated FD flux from flux measured at ND
- As the ND moves off axis, the energy spectrum shifts downwards
- Off-axis measurements reduce cross-section and u energy uncertainties
- Different off-axis spectra can be combined into model-independent data-driven prediction of oscillated spectrum at the FD

ProtoDUNE-ND (ArgonCube 2x2)

- A modularized LArTPC demonstrator in the Fermilab NuMI Beam
- Smaller but complete version of ND-LAr module $(0.7 \times 0.7 \times 1.4 \text{ m}^3)$

LArPix Pixelated charge readout

Two ARAPUCA-based photon detection systems being tested LCM (left) ArCLight (right)

DUNE physics programme

Mass ordering, θ_{23} octant

High precision δ CP

High precision measurements of $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, Δm_{32}^2

Sensitivity to low energy neutrinos \rightarrow supernova, solar neutrinos

- Low background → sensitivity to BSM physics
- E.g. baryon number violation

Atmospheric neutrino oscillation

Neutrino physics and more (e.g. dark matter searches) in the ND

Complementarity with Hyper-Kamiokande – different beam, baseline, technology \rightarrow Different interactions, parameter space and systematics

Neutrinos from Core Collapse Supernova

- Over 99% of all gravitational binding energy of collapsed core emitted as neutrinos
- Flavour content and spectra change throughout the phases of the core collapse
- Use neutrinos to study collapse mechanism, time evolution, black hole formation
- First particles to reach Earth: pointing information in multi-messenger astronomy
- 1-3 Galactic Core Collapse SN/100 years

DUNE has unique sensitivity to electron-flavour neutrinos

Physics Beyond the Standard Model

• Baryon number violation, dark matter searches, sterile neutrinos, etc.

Example: proton decay

- Underground location
- Large fiducial mass
- Imaging capabilities

 $p \rightarrow K^+ \overline{\nu}$ (dominant SUSY GUT mode)

- Identify kaon by dE/dx and decay products
- Main background: atmospheric neutrinos

Status and timeline

North detector cavern Photo by Matt Kapust, SDSTA – 19 Jan 2023

- FD site excavation over half complete
- Beamline design is almost 2/3 completed and on track
- Facilities final design complete

2029 Start of Science
 (First two Far Detector modules)

Atmospheric nu, astrophysics

> 2031 Start of Phase I

LBL, atmospheric nu, astrophysics

2037-2038 Start of Phase II

Full physics scope

DUNE Phase I

Determine mass ordering (3-5 y)

•

•

- 3σ CP violation if • $\delta CP = -\pi/2$ (4-6y)
 - Precision measurement of oscillation parameters
- Full sensitivity to • SN neutrinos

Need phase II to achieve full physics potential

DUNE Phase II

- Most precise measurement of δCP, no matter the true values of unknown parameters (7-16° resolution)
- 5σ CP violation discovery sensitivity over 50% **\deltaCP** values (11y)
- Independent measurement of $sin^2 2\theta_{13}$
- Sensitivity to θ_{23} octant
- Test three-flavour paradigm
- World-leading sensitivity to BSM physics and astrophysics

The DUNE Collaboration

- More than 1300 collaborators
- More than 200 institutions
- More than 30 countries (plus CERN)

DUNE CM January 2023

Summary

- DUNE is a next generation neutrino experiment
 - Long baseline, most intense neutrino beam in the world, large-scale state-ofthe-art detector technology, complementarity with Hyper-Kamiokande
- Simultaneously measure all parameters governing $\nu_1 - \nu_3$ and $\nu_2 - \nu_3$ mixing in single experiment, without external constraints
- Mass ordering, SN neutrinos and precision measurements in phase I
- Full physics potential in phase II
- Exciting times ahead!

