KamLAND-Zen Experiment

International Conference on the Physics of the Two Infinities March 29, 2023 Itaru Shimizu (Tohoku University)

Matter Dominated Universe

- significant **asymmetry** between matter and anti-matter

 neutrinos and photons are the most abundant particle
 neutrinos / nucleon ~ 10⁹

Neutrinos may play a key role to explain matter/anti-matter asymmetry

Light Neutrino Mass

Possible mass terms

Heavy neutrino (just below GUT scale) naturally explains "finite but light neutrino mass"

Matter Production

Three Sakharov conditions

Violation of B-L. Guaranteed if neutrinos are Majorana particles.

• C and CP violation. Guaranteed if the neutrino Yukawa couplings contain physical phases.

• Departure from thermal equilibrium. Guaranteed, due to the expansion of the Universe. A. Ibarra, Leptogenesis, INSS 2012

CP violating decay of heavy neutrino explains "matter dominance in the universe"

Neutrinoless Double-Beta Decay

$0\nu\beta\beta$ Experiments

M. Agostini et al, arXiv:2202.01787

Sensitive background [events/(mol yr)] 1×10²⁵ yr 1×10²⁶ yr 3×1025 yr CUORE 10^{-1} EXO-200 LZ-nat KLZ-400 SNQ+ 10⁻² MJD PandaX-III SuperNEMO KLZ-800 10⁻³ GERDA-II Amore-I CUPID 10^{-4} EGEND-200 lower BG 1×10²⁸ yr nEXO NEXT-H 10^{-5} LEGEND-1000 10^{-6} 10³ 10⁵ 10⁴ larger mass Sensitive exposure [mol yr] KamLAND-Zen (Scintillator) **GERDA (Ge-detector) CUORE (Bolometer)** Clean room Dilution Unit Lock system A CUORE-0 OVC **Cryostat with Detector array** internal Cu shield ⁴⁰K Shield IVC Still Plate Cold Plate Water tan Xe-LS 24 ton Inner Balloon (IB) with HP water Mixing Chamber CUORE 3.80 m diameter and µ-veto (988 TeO₂ crystals) **HP** liquid Ar Outer-LS 1 kton **P** $\mathbf{\Theta}$ V Θ

Prospect on Neutrino Mass Search

KamLAND-Zen

KamLAND-Zen

Zero Neutrino Double Beta

Why Xe?

Kamioka underground

KamLAND detector

- Isotopic enrichment (centrifugal) established
- Gas purification is possible
- Soluble to LS more than 3 wt%, easily extracted
- Slow $2\nu\beta\beta$ requires modest energy resolution

competing exp.XeEXO-200200 kgKamLAND-Zen745 kg

largest amount of ¹³⁶Xe !!

Upgrade of KamLAND-Zen

Present

Past

Future

KamLAND-Zen 400

Nylon balloon R 1.54 m

Xenon 320 – 380 kg

world top performance

Nylon balloon R 1.90 m

Xenon 745 kg

target $\langle m_{\beta\beta} \rangle \sim 40 \text{ meV}$

reduced radioactive BG

demonstration of scalability

KamLAND2-Zen

Xenon 1 ton

target $\langle m_{\beta\beta} \rangle \sim 20 \text{ meV}$

high light yield better performance

KamLAND-Zen 400

Phase-I (R < 1.35 m)

Phase-II (R < 1 m)

Improved Production Method

KamLAND-Zen 400

KamLAND-Zen 800

dust may be attached to the film during production

newly introduced

- goggle
- laundry twice a day
- welding machine
- more neutralizer
- cover sheet

Balloon Production Work

Balloon installation completed and started LS filling on May 10, 2018

top of the detector

detector inside view

Balloon installation completed and started LS filling on May 10, 2018

top of the detector

detector inside view

Background from Inner Balloon (IB)

0

 $X^{2}+Y^{2}(m^{2})$

sensitive volume : R < 1.0 m

sensitive volume : R < 1.57 m

 $X^{2}+Y^{2}(m^{2})$

> ×3 sensitive volume !!

Long-lived Spallation Products

xenon spallation products ~40% rejection efficiency

Event Selection

candidate

candidate

are fitted simultaneously

Fit to Energy Spectra for $0\nu\beta\beta$

0vββ candidate

(sensitive to $0\nu\beta\beta$ signal)

523.4 days livetime

long-lived candidate

(Long-lived BG constraint)

49.3 days livetime

0νββ best-fit : 0 event
upper limit : < 7.9 event at 90% C.L.
No positive signal, but we obtained a stringent upper limit

¹³⁶Xe $0\nu\beta\beta$ Decay Half-life

Limits on Neutrino Mass

Limits on Neutrino Mass

First search in the inverted ordering (IO) region

Background Measures in Future

current status

Search sensitivity will be limited by the backgrounds from 2vββ and long-lived spallation

ROI event (2.35 < E < 2.70 MeV)

measures in future

Particle Identification

MC shows KamNET rejects ~27% of long-lived background

R&D for KamLAND2-Zen

Mirror

High Q.E. PMT

x1.9 Light Collection Eff.

> x1.8

New liquid scintillator **X1.4**

 $\sigma_E @ Q$ -value = 4% \rightarrow 2%

 $\rightarrow 2\nu\beta\beta$ BG reduction ~ 1/100 !

1000 kg enriched Xe

State-of-the-art electronics

more neutron tagging efficiency \rightarrow long-lived BG reduction

Imaging device

e⁻ / gamma identification \rightarrow long-lived BG reduction

KamLAND2-Zen Prototype

High performance of KamLAND2 will be demonstrated with the prototype detector

- High Q.E. PMT / light collecting mirror were installed
- New liquid scintillator was installed
- DAQ with new electronics will be performed soon

KamLAND2 prototype

inside view

KamLAND2-Zen will cover the IO region target $\langle m_{\beta\beta}\rangle$ ~ 20 meV / 5 year

Summary

- Neutrinoless double-beta decays provide an important probe for physics beyond the Standard Model.
- Results from KamLAND-Zen were presented.
 KamLAND-Zen limits on 0vββ at 90% C.L.

KamLAND-Zen 400 $T^{0v}_{1/2} > 0.9 \times 10^{26} \text{ yr}$ KamLAND-Zen 800 $T^{0v}_{1/2} > 2.0 \times 10^{26} \text{ yr}$ Combined $T^{0v}_{1/2} > 2.3 \times 10^{26} \text{ yr}$ NME calculations assuming $g_A \sim 1.27$ $\langle m_{\beta\beta} \rangle < 36-156 \text{ meV}$

First probe of the inverted mass ordering region!

• R&D for KamLAND2-Zen is ongoing aiming at a test of inverted neutrino mass ordering.

KamLAND-Zen Collaboration

~50 physicists work on this project

Collaboration meeting in March, 2023

Backup

Test of Majorana Neutrino

Milestone of $0\nu\beta\beta$ search

 $[T_{1/2}^{0\nu}]^{-1} = G^{0\nu}(Q_{\beta\beta}, Z)|M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2 \qquad \langle m_{\beta\beta} \rangle \equiv \left| \sum_{i=1}^{\circ} U_{ei}^2 m_i \right|$

Phase space factor

Highly depends on target double-beta decay nuclei (larger in high Q-value) Precisely calculated considering Coulomb distortion of the electron wave functions uncertainty ~a few % Phys. Rev. C 85, 034316 (2012), Phys. Rev. C 88, 037303 (2013)

Nuclear matrix element (NME)

Nuclear states needs to be modeled Uncertainties due to approximation and dependence on nuclear modeling are large

uncertainty ~factor 2-3

Axial-vector coupling : $g_A = 1.27$ (neutron) $|M^{0\nu}| \propto g_A^2$ smaller value $g_A \sim 1$ in β -decay **no good prediction in 0\nu\beta\beta**

EPJ Web of Conferences **137**, 08011 (2017)

Underground Experiment

Short-lived Spallation Products

Proton-beam Spallation Data

p + ¹³⁶Xe (500 MeV/nucleon)

https://www.sciencedirect.com/science/article/pii/S0375947412004423?via%3Dihub

spallation reaction

collisions between nucleon (cascade)

- \rightarrow increase "temperature"
- \rightarrow evaporation (nucleon emission)

neutron emission favored over proton emission due to the absence of the Coulomb barrier

Production Rate Estimated by FLUKA

events/day/kton				
nuclei	rate_all	rate_ROI	T 1/2 (ns)	
Y88	0.136	0.110	9.212E+15	
Zr90 m1	0.093	0.012	8.092E+08	
Nb90	0.095	0.024	5.256E+13	
Tc96	0.059	0.012	3.698E+14	
Rh98	0.076	0.011	5.232E+11	
Rh100	0.234	0.088	7.488E+13	
Ag104	0.160	0.012	4.152E+12	
Ag104 m1	0.111	0.018	2.01E+12	
In107	0.135	0.019	1.944E+12	
In108	0.194	0.089	3.48E+12	
In110	0.236	0.053	1.771E+13	
In110m1	0.351	0.066	4.146E+12	
Sn109	0.122	0.027	1.08E+12	
Sb113	0.231	0.036	4.002E+11	
Sb114	0.297	0.020	2.094E+11	
Sb115	0.839	0.031	1.926E+12	
Sb116	0.939	0.071	9.48E+11	

Sb118	1.288	0.165	2.16E+11
Sb124	0.054	0.016	5.201E+15
Te115	0.124	0.012	3.48E+11
Te117	0.594	0.052	3.72E+12
1119	0.533	0.053	1.146E+12
1120	0.953	0.091	4.896E+12
1122	1.965	0.289	2.178E+11
1124	1.654	0.190	3.608E+14
1130	1.635	0.269	4.45E+13
1132	0.441	0.152	8.262E+12
1134	0.194	0.046	3.15E+12
Xe121	0.540	0.100	2.406E+12
Cs125	0.266	0.012	2.802E+12
Cs126	0.080	0.011	9.84E+10
Cs128	0.229	0.031	2.196E+11
Total	330.845	2.427	

Light Yield Increase by Mirror

LS: 13 m diameter

~1.8 times increase of light yield

Mirror Shape Optimization

20 inch PMT coverage 34%

light yield ~ photo-coverage

hexagon entrance \rightarrow circle exit

flexible shape construction was achieved by G4TessellatedSolid method in Geant4

polygon entrance \rightarrow circle exit

further reduction of dead space

mirror shape in 4 × 4 face

4 hexagons10 pentagons2 squares

Mirror Production

Resin mold

+ Shaped acrylic

Aluminum vapor deposition

