Machine learning for gravitational wave inference

International conference on the physics of the two infinities, Kyoto, March 28th 2023 *Jonathan Gair,* Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam

1

collaborators: **Stephen Green**, **Max Dax**, **Jonas Wildberger**, Jakob Macke, Michael Pürrer, Bernhard Schölkopf, Alessandra Buonanno

Current and future detectors

- LIGO/Virgo/KAGRA: Ground-based interferometers currently operating. 90+ (likely) astrophysical sources observed to date, over three observing runs.
- LISA: space-based interferometer to launch in ~2035, operating in mHz band. ESA-led; NASA contributions,
- * 3G: next generation ground-based detector concepts under development. Einstein Telescope (Europe) and Cosmic Explorer (US). To start operation in ~2030s.

Overview of GW parameter estimation

* GW parameter estimation typically uses Bayesian inference, in which we obtain samples from the *posterior distribution* after specifying a *prior distribution* and the *likelihood*

$$p(\vec{\theta}|d) = \frac{p(d|\vec{\theta})p(\vec{\theta})}{p(d)}$$

* To specify the likelihood, we typically assume the detector output is a linear combination

$$s(t) = n(t) + h(t; \vec{\theta})$$

* and that the noise is Gaussian and stationary, giving the likelihood

$$p(d|\vec{\theta}) \propto \exp\left[-\frac{1}{2}(d-h(\vec{\theta})|d-h(\vec{\theta}))\right] \qquad (a|b) = \int_{-\infty}^{\infty} \frac{\tilde{a}^*(f)\tilde{b}(f) + \tilde{a}(f)\tilde{b}^*(f)}{S_h(f)} \mathrm{d}f$$

 Inference typically uses *Markov Chain Monte Carlo* or other stochastic sampling methods to draw samples from the posterior distribution - needs millions of likelihood evaluations, which rely on constructing expensive waveform models.

Computational cost: GW150914

- The analysis of GW150914 used 50 million CPU hours (20,000 PCs running for 100 days). A significant part of that was for PE.
- Lag between observation and publication of exceptional events mostly dominated by PE (re-)runs.

Primary black hole mass	$36^{+5}_{-4}M_{\odot}$
Secondary black hole mass	$29^{+4}_{-4}{M}_{\odot}$
Final black hole mass	$62^{+4}_{-4}{M}_{\odot}$
Final black hole spin	$0.67\substack{+0.05 \\ -0.07}$
Luminosity distance	410^{+160}_{-180} Mpc
Source redshift z	$0.09\substack{+0.03\\-0.04}$

Challenges in GW parameter estimation

- Future detectors will have more events: expect to move from ~1 event/ week to several/day.
- Future detectors will have wider
 bandwidths: new types of source,
 longer waveforms and hence more
 expensive PE.
- Sources for LISA (and to a lesser extent 3G detectors) will overlap in time and frequency.
- Fast PE needed for multi-messenger: send triggers for follow-up.
- Need faster inference: accelerated waveform models, faster likelihoods, novel sampling techniques etc.

Epoch		2015-2016	2016-2017	2018-2019	2020+	2024+
Planned run duration		4 months	9 months	12 months	(per year)	(per year)
	LIGO	40-60	60-75	75-90	105	105
Expected burst range/Mpc	Virgo		20 - 40	40 - 50	40 - 70	80
	KAGRA	_	—	—	_	100
	LIGO	40-80	80-120	120 - 170	190	190
Expected BNS range/Mpc	Virgo	_	20 - 65	65-85	65-115	125
KAG		_	—	—	_	140
	LIGO	60-80	60-100	_		
Achieved BNS range/Mpc	Virgo	_	25 - 30	—		
KACRA						
Estimated BNS detections		0.05 - 1	0.2-4.5	1 - 50	4 - 80	11 - 180
Actual DNS detections		0	1			
	5 deg^2	< 1	1-5	1-4	3-7	23-30
90% CR % within	20 deg^2	< 1	7 - 14	12-21	14 - 22	65-73
media	median/deg ²		230 - 320	120 - 180	110 - 180	9-12
	5 deg^2	4-6	15-21	20-26	23-29	62-67
Searched area % within	20 deg^2	14-17	33-41	42-50	44-52	87-90

Neural posterior estimation

- * Stochastic sampling relies on being able to evaluate the likelihood, $p(d|\theta)$, which requires a new waveform evaluation at each sampling step.
- * Alternative: construct a neural network that generates samples from $q(\theta|d)$, a distribution that approximates the parameter posterior distribution, $p(\theta|d)$. Train by minimising the average *cross-entropy* with the true distribution

$$L = \mathbb{E}_{p(d)} \mathbb{E}_{p(\theta|d)} \left[-\log q(\theta|d) \right] = \mathbb{E}_{p(\theta)} \mathbb{E}_{p(d|\theta)} \left[-\log q(\theta|d) \right]$$

* This is *simulation based inference*. We compute the loss using simulated data

Sample
$$\theta^{(i)} \sim p(\theta)$$
, $i = 1, ..., N$
Simulate $d^{(i)} \sim p(d|\theta^{(i)})$; $d^{(i)} = h(\theta^{(i)}) + n^{(i)}$ with $n^{(i)} \sim p_{S_n}(n)$
Compute $L \approx \frac{1}{N} \sum_{i=1}^{N} \left[-\log q(\theta^{(i)}|d^{(i)}) \right]$

* Advantages: *likelihood-free, amortised* cost of waveform generation, *flexible*.

Normalizing flows

* A normalising flow represents a complex distribution as a mapping of a simple one.

Construct target distribution using

$$q(\theta|d) = \mathcal{N}(0,1)^D \left(f_d^{-1}(\theta) \right) \left| \det J_{f_d}^{-1} \right|$$

- * Want mapping to be invertible and have a simple Jacobian determinant. Can represent a normalising flow with these properties using a neural network.
- * We use normalising flows built from a sequence of coupling transforms described by quadratic splines (*spline flows* Durkan et al. 2019).

Big neural networks: \approx 350 layers and 150 million parameters

Results: GWTC-1 BBHs

- Used 5×10^6 waveforms for training
 - IMRPhenomPv2
 - T = 8 s, $f_{\min} = 20$ Hz, $f_{\max} = 1024$ Hz
 - 15D parameter space
 - $m_1, m_2 \in [10, 80] \ M_{\odot}$

- + stationary Gaussian noise realisations consistent with measured PSDs
- Trained several neural networks based on different noise level / number of detectors / distance range:

Observing run	Detectors	Distance range [Mpc]
01	HL	[100, 2000]
O2	HL	$[100, 2000] \\ [100, 6000]$
	HLV	[100, 1000]

Results: GWTC-1 BBHs

Results: GWTC-1 BBHs

- Compare NPE posteriors to "standard" posteriors generated by *LALInference* and *Bilby*. Use JS divergence as a metric for comparison.
- JS divergence less than 2 nats considered *indistinguishable*.

	00
GW150914 - 0.8 1.1 0.2 0.8 0.2 0.3 0.5 0.5 0.1 0.3 0.8 0.2 0.7 1.4	- 20
GW151012 - 2.7 1.6 0.1 0.9 0.4 0.2 0.5 0.5 0.1 0.1 0.6 0.1 1.4 0.5	1.5
GW170104 - 6.4 2.6 0.2 0.4 0.7 0.1 0.7 0.4 0.1 0.1 0.1 0.3 0.3 0.8 0.6	- 15
GW170729 - 0.9 1.5 0.4 6.3 0.2 0.2 1.0 0.8 0.2 0.3 0.3 1.4 0.3 1.2 1.2	10
GW170809 - 0.5 0.8 0.1 0.5 0.2 0.1 0.4 0.4 0.1 0.5 1.4 0.2 2.2 5.5	- 10
GW170814 - 1.2 1.3 0.2 1.5 0.2 0.2 0.4 0.3 0.2 1.4 1.4 1.2 2.5 2.0	
GW170818 - 1.6 1.3 0.2 1.1 1.0 0.2 1.9 0.5 0.1 2.4 1.8 0.4 3.8 2.4	- 5
GW170823 - 0.5 0.6 0.1 0.9 0.2 0.4 0.2 0.2 0.2 0.5 0.2 0.4 0.4	

JS divergence $[\times 10^{-3} \text{ nat}]$

Results: O3 events

GW190413_052954 GW190413_134308 GW190421_213856 GW190514_065416 GW190521_074359 GW190527_092055 GW190602_175927 GW190719_215514 GW190727_060333 GW190731_140936 GW190803_022701 GW190805_211137 Event GW190828_063405 GW190909_114149 GW190915_235702 GW190926_050336 GW190929_012149 GW191222_033537 GW191230_180458 GW200128_022011 GW200208_130117 GW200208_222617 GW200216_220804 $GW200219_094415$ GW200224_222234 GW200311_115853

Used to analyse 30 BBHs from GWTC-3 using precessing, higher mode waveform models.

First robust PE to be obtained using SEOBNRv4PHM for many of these events.

Result validation: importance sampling

- * Can reweight samples to target density using *importance sampling*.
- * NPE samples suitable for reweighting because *probability mass covering*.
- Several advantages
 - correct posterior inaccuracies.
 - effective sample size, n_{eff}, provides a metric of quality of samples.
 - evidence can be directly computed.
 - neural networks extrapolate
 unpredictably to out-of-distribution
 (OOD): low n_{eff} indicates OOD data.
- But: no longer likelihood-free! :-(

$$n_{\rm eff} = \frac{\left(\sum_{i} w_{i}\right)^{2}}{\sum_{i} w_{i}^{2}}$$

target (prior x likelihood

_proposal (NPE)

$$p(d) \approx \frac{1}{n} \sum_{i=1}^{n} w_i$$

Importance sampling: posteriors

* Importance-reweighted posteriors show closer agreement with standard sampling

DINGO-IS

Event	$\log p(d)$	ε	Event	$\log p(d)$	ϵ	Event	$\log p(d)$	ϵ
GW190408	-16178.332 ± 0.012	6.9%	GW190727	-15992.017 ± 0.009	10.3%	GW191230	-15913.798 ± 0.009	12.2%
$_{-181802}$	-16178.172 ± 0.010	9.3%	_060333	-15992.428 ± 0.005	30.8%	$_{-180458}$	-15913.918 ± 0.010	8.8%
GW190413	-15571.413 ± 0.006	22.5%	GW190731	-16376.777 ± 0.005	32.6%	GW200128	-16305.128 ± 0.013	6.1%
$_{-}052954$	-15571.391 ± 0.005	26.3%	$_{-140936}$	-16376.763 ± 0.005	31.0%	$_022011$	-16304.510 ± 0.007	18.3%
GW190413	-16399.331 ± 0.009	12.4%	GW190803	-16132.409 ± 0.006	21.4%	GW200129	-16226.851 ± 0.109	0.1%
$_{-134308}$	-16399.139 ± 0.014	4.7%	$_{-022701}$	-16132.408 ± 0.005	27.8%	$_{-065458}$	-16231.203 ± 0.051	0.4%
GW190421	-15983.248 ± 0.008	15.3%	GW190805	-16073.261 ± 0.006	20.0%	GW200208	-16136.381 ± 0.007	16.6%
$_{-213856}$	-15983.131 ± 0.010	9.4%	$_211137$	-16073.656 ± 0.007	16.6%	$_{-130117}$	-16136.531 ± 0.009	11.2%
GW190503	-16582.865 ± 0.022	2.0%	GW190828	-16137.220 ± 0.009	12.2%	GW200208	-16775.200 ± 0.011	7.4%
$_{-185404}$	-16583.352 ± 0.027	1.4%	$_{-063405}$	-16136.799 ± 0.010	9.1%	$_{222617}$	-16774.582 ± 0.021	2.2%
GW190513	-15946.462 ± 0.043	0.6%	GW190909	-16061.634 ± 0.011	7.4%	GW200209	-16383.847 ± 0.009	12.5%
$_{205428}$	-15946.581 ± 0.017	3.4%	$_{-114149}$	-16061.275 ± 0.016	3.8%	$_{-}085452$	-16384.157 ± 0.025	1.6%
GW190514	-16556.466 ± 0.009	11.6%	GW190915	-16083.960 ± 0.015	20.8%	GW200216	-16215.703 ± 0.017	3.4%
$_065416$	-16556.314 ± 0.017	3.5%	$_{-235702}$	-16083.937 ± 0.027	4.8%	$_{220804}$	-16215.540 ± 0.018	3.1%
GW190517	-16271.048 ± 0.027	1.3%	GW190926	-16015.813 ± 0.019	2.8%	GW200219	-16133.457 ± 0.011	9.6%
_055101	-16272.428 ± 0.034	0.9%	_050336	-16015.861 ± 0.009	12.1%	_094415	-16133.157 ± 0.017	4.0%
GW190519	-15991.171 ± 0.008	15.2%	GW190929	-16146.666 ± 0.018	3.2%	GW200220	-16303.782 ± 0.007	17.3%
$_{-153544}$	-15991.287 ± 0.068	0.2%	$_{-}012149$	-16146.591 ± 0.021	2.4%	$_{-}061928$	-16303.087 ± 0.026	1.5%
GW190521	-16008.876 ± 0.008	13.4%	GW191109	-17925.064 ± 0.025	1.7%	GW200220	-16136.600 ± 0.008	13.2%
$_{-}074359$	-16008.037 ± 0.015	4.2%	_010717	-17922.762 ± 0.041	0.6%	$_{-124850}$	-16136.519 ± 0.037	0.7%
GW190527	-16119.012 ± 0.008	13.8%	GW191127	-16759.328 ± 0.019	2.7%	GW200224	-16138.613 ± 0.006	22.5%
$_{-}092055$	-16118.781 ± 0.013	6.1%	-050227	-16758.102 ± 0.029	1.2%	$_{-222234}$	-16139.101 ± 0.006	21.4%
GW190602	-16036.993 ± 0.006	25.0%	‡GW191204	-15984.455 ± 0.015	4.2%	‡GW200308	-16173.938 ± 0.013	6.0%
$_{-175927}$	-16037.529 ± 0.006	23.5%	$_{-110529}$	-15983.618 ± 0.063	0.3%	$_{-173609}$	-16173.692 ± 0.025	1.7%
GW190701	-16521.381 ± 0.040	0.6%	GW191215	-16001.286 ± 0.013	5.8%	GW200311	-16117.505 ± 0.011	7.4%
203306	-16521.609 ± 0.010	10.1%	${-223052}$	-16000.846 ± 0.052	0.4%	$_{-115853}$	-16117.583 ± 0.009	11.9%
GW190719	-15850.492 ± 0.008	13.4%	GW191222	-15871.521 ± 0.007	16.5%	‡GW200322	-16313.568 ± 0.307	0.0%
$_215514$	-15850.339 ± 0.011	8.0%	$_{-}033537$	-15871.450 ± 0.005	25.8%	_091133	-16313.110 ± 0.105	0.1%

Table II. 42 BBH events from GWTC-3 analyzed with DINGO-IS. We report the log evidence $\log p(d)$ and the sample efficiency ϵ for the two waveform models IMRPhenomXPHM (upper rows) and SEOBNRv4PHM (lower rows). Highlighting colors indicate the sample efficiency (green: high; yellow: medium; orange/red: low); DINGO-IS results can be trusted for medium and high ϵ (see Supplemental Material). Events in gray suffer from data quality issues [1, 21]. ‡See remarks on these events in text.

Future challenges

- DINGO (Deep INference for Gravitational wave Observations) under review to be used by LVK for PE.
- Various extensions to pursue:
 - *Additional physics*: eccentricity, GR deviations, lensing etc. (*in progress*).
 - *Signal duration*: extension to BBH with component masses below 10, NSBH and BNS is a priority.
 - *Population inference*: use DINGO to provide samples to standard methods or output population posterior directly.
 - *Instrumental realism*: exploit simulation based inference to move away from Gaussian approximation.
 - *Overlapping signals*: necessary for 3G detectors and LISA.

Summary

- Gravitational wave science relies on obtaining parameter posterior distributions for all observed sources. Multi-messenger applications require rapid estimation of sky position, and perhaps other parameters.
- Current PE codes are computationally intensive—need new methods that are fast, robust and accurate.
- Neural posterior estimation is a new, machine learning approach that now has comparable performance to standard methods in a fraction of the time. Training cost is amortised, allowing near real-time analysis of new observations.
- * Code under internal review to be used within the LVK for analysis of future events.
- Many developmental challenges remain: long waveforms, non-stationary noise, new sources, overlapping sources, population inference....