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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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Figure 1.1: Gravitational-wave strain noise for current and future detectors (left) and astrophysical reach for
equal-mass, nonspinning binaries distributed isotropically in sky and inclination (right).

1.2 Gravity, Spacetime and Gravitational Waves

The nature of space and time has fascinated the human intellect for millennia. In the 17th century Newton laid
out the first concrete notions in his Principia Mathematica by asserting that space and time are immutable
and not amenable to change due to external influence:

• Absolute, true, and mathematical time, of itself, and from its own nature, flows equally without relation
to anything external.

• Absolute space, in its own nature, without relation to anything external, remains always similar and
immovable.

A corner stone of Newtonian physics is the principle of relativity according to which the laws of physics
are the same for all observers in relative motion. Specifically, spatial separations and time intervals between
physical events are identical for all observers. This meant that the speed of light was different for observers
depending on their relative motion. These notions were the guiding principles of physics for over two
centuries and formed the basis for building the theory of gravitation.

At the beginning of the 20th century Einstein formulated the special theory of relativity in which the
speed of light was the same for all observers as required by the decisive precision experiment of Michelson
and Morley a few years before. The idea of absolute space and time was incompatible with special relativity
in which spatial separations and time intervals depended on an observer’s motion. Furthermore, he soon
realized that matter must alter the geometry of space and the flow of time. This eventually led him to a new
theory of gravity, the general theory of relativity, according to which matter and energy warp spacetime and
accelerated masses can create ripples in that distortion, called gravitational waves, that travel outward from
their sources at the speed of light.

Large amplitude gravitational waves emanate from regions of strong gravity with masses moving at
relativistic speeds, making them ideal for studying dynamical spacetimes. They interact weakly with matter
and are hardly dispersed as they propagate from their sources to Earth; so the waves carry uncorrupted
signature of their sources. A passing gravitational wave causes the rate at which clocks tick and physical
distance between test masses to vary—the basic principle behind gravitational wave detectors. Gravitational
waves were deemed responsible for the measured decrease in the orbital period of a pair of neutron stars
discovered by Hulse and Taylor in 1976. Since 2015, gravitational wave detectors have ushered in a new era
in astronomy.

Current and future detectors
❖ LIGO/Virgo/KAGRA: Ground-based interferometers 

currently operating. 90+ (likely) astrophysical sources 
observed to date, over three observing runs.

❖ LISA: space-based interferometer to launch in ~2035, 
operating in mHz band. ESA-led; NASA contributions,

❖ 3G: next generation ground-based detector concepts 
under development. Einstein Telescope (Europe) and 
Cosmic Explorer (US). To start operation in ~2030s.
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Overview of GW parameter estimation
❖ GW parameter estimation typically uses Bayesian inference, in which we obtain samples 

from the posterior distribution after specifying a prior distribution and the likelihood

❖ To specify the likelihood, we typically assume the detector output is a linear combination

❖ and that the noise is Gaussian and stationary, giving the likelihood

❖ Inference typically uses Markov Chain Monte Carlo or other stochastic sampling methods 
to draw samples from the posterior distribution - needs millions of likelihood 
evaluations, which rely on constructing expensive waveform models.

(a|b) =
Z 1

�1

ã⇤(f)b̃(f) + ã(f)b̃⇤(f)

Sh(f)
dfp(d|~✓) / exp


�1

2
(d� h(~✓)|d� h(~✓))

�

p(~✓|d) = p(d|~✓)p(~✓)
p(d)

<latexit sha1_base64="tmh2mrbvjdNR+GEUbPRC1taFva8=">AAACJXicdVDJSgNBFOxxN25Rj14ag5BcwowmJIKC4MWjglEhE0JPz5ukSc9C95tAGPMzXvwVLx4UETz5K3YWcUELGoqqerx+5SVSaLTtN2tmdm5+YXFpObeyura+kd/cutJxqjg0eCxjdeMxDVJE0ECBEm4SBSz0JFx7vdORf90HpUUcXeIggVbIOpEIBGdopHb+KCm6feAudgHZrV+ix9QNFONZUvRvv5wS/Z4rDUd2adjOF+yyc1jdr9p0QmrVKTmoUadsj1EgU5y388+uH/M0hAi5ZFo3HTvBVsYUCi5hmHNTDQnjPdaBpqERC0G3svGVQ7pnFJ8GsTIvQjpWv09kLNR6EHomGTLs6t/eSPzLa6YY1FuZiJIUIeKTRUEqKcZ0VBn1hQKOcmAI40qYv1LeZaYkNMXmTAmfl9L/ydV+2amUDy8qhZP6tI4lskN2SZE4pEZOyBk5Jw3CyR15IE/k2bq3Hq0X63USnbGmM9vkB6z3D0PApSQ=</latexit>

<latexit sha1_base64="1cP0V3RMdElKctBwE1mVZWuzDsg=">AAACBnicbVBNS0JBFJ1nX2ZfVssIhiRQAnkvooQIhDYtDfIDVGTeeNXBefMeM/cJIq7a9FfatCiibb+hXf+m8WNR2oHLPZxzLzP3+JEUBl3320msrK6tbyQ3U1vbO7t76f2DigljzaHMQxnqms8MSKGgjAIl1CINLPAlVP3+7cSvDkAbEaoHHEbQDFhXiY7gDK3USh+bLOboDVWTdkZ7WbxuDIA3sAfIcq10xs27U9Bl4s1JhsxRaqW/Gu2QxwEo5JIZU/fcCJsjplFwCeNUIzYQMd5nXahbqlgApjmanjGmp1Zp006obSmkU/X3xogFxgwD304GDHtm0ZuI/3n1GDuF5kioKEZQfPZQJ5YUQzrJhLaFBo5yaAnjWti/Ut5jmnG0yaVsCN7iycukcp73LvPe/UWmWJjHkSRH5IRkiUeuSJHckRIpE04eyTN5JW/Ok/PivDsfs9GEM985JH/gfP4AcziWkA==</latexit>

s(t) = n(t) + h(t; ~✓)

3



Computational cost: GW150914
❖ The analysis of GW150914 used 50 

million CPU hours (20,000 PCs 
running for 100 days). A 
significant part of that was for PE.

❖ Lag between observation and 
publication of exceptional events 
mostly dominated by PE (re-)runs.

For robustness and validation, we also use other generic
transient search algorithms [41]. A different search [73] and
a parameter estimation follow-up [74] detected GW150914
with consistent significance and signal parameters.

B. Binary coalescence search

This search targets gravitational-wave emission from
binary systems with individual masses from 1 to 99M⊙,
total mass less than 100M⊙, and dimensionless spins up to
0.99 [44]. To model systems with total mass larger than
4M⊙, we use the effective-one-body formalism [75], which
combines results from the post-Newtonian approach
[11,76] with results from black hole perturbation theory
and numerical relativity. The waveform model [77,78]
assumes that the spins of the merging objects are aligned
with the orbital angular momentum, but the resulting
templates can, nonetheless, effectively recover systems
with misaligned spins in the parameter region of
GW150914 [44]. Approximately 250 000 template wave-
forms are used to cover this parameter space.
The search calculates the matched-filter signal-to-noise

ratio ρðtÞ for each template in each detector and identifies
maxima of ρðtÞwith respect to the time of arrival of the signal
[79–81]. For each maximum we calculate a chi-squared
statistic χ2r to test whether the data in several different
frequency bands are consistent with the matching template
[82]. Values of χ2r near unity indicate that the signal is
consistent with a coalescence. If χ2r is greater than unity, ρðtÞ
is reweighted as ρ̂ ¼ ρ=f½1þ ðχ2rÞ3&=2g1=6 [83,84]. The final
step enforces coincidence between detectors by selecting
event pairs that occur within a 15-ms window and come from
the same template. The 15-ms window is determined by the
10-ms intersite propagation time plus 5 ms for uncertainty in
arrival time of weak signals. We rank coincident events based
on the quadrature sum ρ̂c of the ρ̂ from both detectors [45].
To produce background data for this search the SNR

maxima of one detector are time shifted and a new set of
coincident events is computed. Repeating this procedure
∼107 times produces a noise background analysis time
equivalent to 608 000 years.
To account for the search background noise varying across

the target signal space, candidate and background events are
divided into three search classes based on template length.
The right panel of Fig. 4 shows the background for the
search class of GW150914. The GW150914 detection-
statistic value of ρ̂c ¼ 23.6 is larger than any background
event, so only an upper bound can be placed on its false
alarm rate. Across the three search classes this bound is 1 in
203 000 years. This translates to a false alarm probability
< 2 × 10−7, corresponding to 5.1σ.
A second, independent matched-filter analysis that uses a

different method for estimating the significance of its
events [85,86], also detected GW150914 with identical
signal parameters and consistent significance.

When an event is confidently identified as a real
gravitational-wave signal, as for GW150914, the back-
ground used to determine the significance of other events is
reestimated without the contribution of this event. This is
the background distribution shown as a purple line in the
right panel of Fig. 4. Based on this, the second most
significant event has a false alarm rate of 1 per 2.3 years and
corresponding Poissonian false alarm probability of 0.02.
Waveform analysis of this event indicates that if it is
astrophysical in origin it is also a binary black hole
merger [44].

VI. SOURCE DISCUSSION

The matched-filter search is optimized for detecting
signals, but it provides only approximate estimates of
the source parameters. To refine them we use general
relativity-based models [77,78,87,88], some of which
include spin precession, and for each model perform a
coherent Bayesian analysis to derive posterior distributions
of the source parameters [89]. The initial and final masses,
final spin, distance, and redshift of the source are shown in
Table I. The spin of the primary black hole is constrained
to be < 0.7 (90% credible interval) indicating it is not
maximally spinning, while the spin of the secondary is only
weakly constrained. These source parameters are discussed
in detail in [39]. The parameter uncertainties include
statistical errors and systematic errors from averaging the
results of different waveform models.
Using the fits to numerical simulations of binary black

hole mergers in [92,93], we provide estimates of the mass
and spin of the final black hole, the total energy radiated
in gravitational waves, and the peak gravitational-wave
luminosity [39]. The estimated total energy radiated in
gravitational waves is 3.0þ0.5

−0.5M⊙c2. The system reached a
peak gravitational-wave luminosity of 3.6þ0.5

−0.4 × 1056 erg=s,
equivalent to 200þ30

−20M⊙c2=s.
Several analyses have been performed to determine

whether or not GW150914 is consistent with a binary
black hole system in general relativity [94]. A first

TABLE I. Source parameters for GW150914. We report
median values with 90% credible intervals that include statistical
errors, and systematic errors from averaging the results of
different waveform models. Masses are given in the source
frame; to convert to the detector frame multiply by (1þ z)
[90]. The source redshift assumes standard cosmology [91].

Primary black hole mass 36þ5
−4M⊙

Secondary black hole mass 29þ4
−4M⊙

Final black hole mass 62þ4
−4M⊙

Final black hole spin 0.67þ0.05
−0.07

Luminosity distance 410þ160
−180 Mpc

Source redshift z 0.09þ0.03
−0.04
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❖ Future detectors will have more 
events: expect to move from ~1 event/
week to several/day.

❖ Future detectors will have wider 
bandwidths: new types of source, 
longer waveforms and hence more 
expensive PE.

❖ Sources for LISA (and to a lesser 
extent 3G detectors) will overlap in 
time and frequency.

❖ Fast PE needed for multi-messenger: 
send triggers for follow-up.

❖ Need faster inference: accelerated 
waveform models, faster likelihoods, 
novel sampling techniques etc.

Prospects for Observing and Localizing GW Transients with aLIGO, AdV and KAGRA 27

Table 3 Summary of a plausible observing schedule, expected sensitivities, and source localization with
the Advanced LIGO, Advanced Virgo and KAGRA detectors, which will be strongly dependent on the
detectors’ commissioning progress. Ranges reflect the uncertainty in the detector noise spectra shown
in Figure 1. The burst ranges assume standard-candle emission of 10�2

M�c
2 in gravitational waves at

150 Hz and scale as E
1/2
GW, so it is greater for more energetic sources (such as binary black holes). The BNS

localization is characterized by the size of the 90% credible region (CR) and the searched area. These are
calculated by running the BAYESTAR rapid sky-localization code (Singer and Price 2016) on a Monte
Carlo sample of simulated signals, assuming senisivity curves in the middle of the plausible ranges (the
geometric means of the upper and lower bounds). The variation in the localization reflects both the variation
in duty cycle between 70% and 75% as well as Monte Carlo statistical uncertainty. The estimated number of
BNS detections uses the actual ranges for 2015 – 2016 and 2017 – 2018, and the expected range otherwise;
future runs assume a 70 – 75% duty cycle for each instrument. The BNS detection numbers also account for
the uncertainty in the BNS source rate density (Abbott et al 2017a). Estimated BNS detection numbers and
localization estimates are computed assuming a signal-to-noise ratio greater than ⇠ 12. Burst localizations
are expected to be broadly similar to those derived from timing triangulation, but vary depending on the
signal bandwidth; the median burst searched area (with a false alarm rate of ⇠ 1 yr�1) may be a factor of
⇠ 2 – 3 larger than the values quoted for BNS signals (Essick et al 2015). No burst detection numbers are
given, since the source rates are currently unknown. Localization numbers for 2016 – 2017 include Virgo,
and do not take into account that Virgo only joined the observations for the latter part the run. The 2024+
scenario includes LIGO-India at design sensitivity.

Epoch 2015 – 2016 2016 – 2017 2018 – 2019 2020+ 2024+
Planned run duration 4 months 9 months 12 months (per year) (per year)

Expected burst range/Mpc
LIGO 40 – 60 60 – 75 75 – 90 105 105
Virgo — 20 – 40 40 – 50 40 – 70 80

KAGRA — — — — 100

Expected BNS range/Mpc
LIGO 40 – 80 80 – 120 120 – 170 190 190
Virgo — 20 – 65 65 – 85 65 – 115 125

KAGRA — — — — 140

Achieved BNS range/Mpc
LIGO 60 – 80 60 – 100 — — —
Virgo — 25 – 30 — — —

KAGRA — — — — —
Estimated BNS detections 0.05 – 1 0.2 – 4.5 1 – 50 4 – 80 11 – 180

Actual BNS detections 0 1 — — —

90% CR % within 5 deg2 < 1 1 – 5 1 – 4 3 – 7 23 – 30
20 deg2 < 1 7 – 14 12 – 21 14 – 22 65 – 73

median/deg2 460 – 530 230 – 320 120 – 180 110 – 180 9 – 12

Searched area % within 5 deg2 4 – 6 15 – 21 20 – 26 23 – 29 62 – 67
20 deg2 14 – 17 33 – 41 42 – 50 44 – 52 87 – 90

with the two LIGO detectors. Virgo joined the network in August 2017, dramatically
improving sky localization. With a four- or five-site detector network at design sensi-
tivity, we may expect a significant fraction of GW signals to be localized to within a
few square degrees by GW observations alone.

The first BBH detection was made promptly after the start of observations in
September 2015; they are the most commonly detected GW source, but are not
a promising target for multi-messenger observations. GW detections will become
more common as the sensitivity of the network improves. The first BNS coalescence
was detected in August 2017. This was accompanied by observations across the
electromagnetic spectrum (Abbott et al 2017k). Multi-messenger observations of

Challenges in GW parameter estimation
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Neural posterior estimation
❖ Stochastic sampling relies on being able to evaluate the likelihood,           , which 

requires a new waveform evaluation at each sampling step.

❖ Alternative: construct a neural network that generates samples from           , a 
distribution that approximates the parameter posterior distribution,           . Train by 
minimising the average cross-entropy with the true distribution

❖  This is simulation based inference. We compute the loss using simulated data

❖ Advantages: likelihood-free, amortised cost of waveform generation, flexible.
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Normalizing flows
❖ A normalising flow represents a complex distribution as a mapping of a simple one.

q(θ |d)!(0,1) fd

❖ Construct target distribution using

❖ Want mapping to be invertible and have a simple Jacobian determinant. Can represent 
a normalising flow with these properties using a neural network.

❖ We use normalising flows built from a sequence of coupling transforms described by 
quadratic splines (spline flows Durkan et al. 2019).
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Group-Equivariant NPE

noise PSD
Sn

strain data
d

time shifts
⌧I

embedding
network

normal
u

flow f
parameters

✓

d�⌧I

128 dims

GNPE

Dax, SRG+ (ICLR, 2022)

24

Refinements

Synthetic PSDs

Data compression

Data alignment

Big neural networks:  layers and 150 million parameters ≈ 350
8



Results: GWTC-1 BBHs
• Used  waveforms for training

• IMRPhenomPv2
• ,  ,   
• 15D parameter space
•

• + stationary Gaussian noise realisations consistent with measured PSDs

• Trained several neural networks based on different noise level / number of detectors/ 
distance range:

5 × 106

T = 8 s fmin = 20 Hz fmax = 1024 Hz

m1, m2 ∈ [10,80] M⊙
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Results: GWTC-1 BBHs
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Results: GWTC-1 BBHs
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• Compare NPE posteriors to “standard” posteriors generated by LALInference 
and Bilby. Use JS divergence as a metric for comparison.

• JS divergence less than 2 nats considered indistinguishable.
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Results: O3 events
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Used to analyse 30 BBHs from 
GWTC-3 using precessing, 
higher mode waveform models.

First robust PE to be obtained 
using SEOBNRv4PHM for many 
of these events.



❖ Can reweight samples to target density 
using importance sampling.

❖ NPE samples suitable for reweighting 
because probability mass covering.

❖ Several advantages

- correct posterior inaccuracies.

- effective sample size, neff, provides a 
metric of quality of samples.

- evidence can be directly computed.

- neural networks extrapolate 
unpredictably to out-of-distribution 
(OOD): low neff indicates OOD data.

❖ But: no longer likelihood-free! :-(

Result validation: importance sampling
Establish trust in deep learning

❖ Since we have GW likelihood and the NPE density, we can use importance sampling to compare. 
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Importance sampling: posteriors
❖ Importance-reweighted posteriors show closer agreement with standard sampling 
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DINGO-IS

Flagging failure cases

❖ Sample efficiency  serves to 
validate results. 

❖ Out-of-distribution data:

❖ Inconsistent with noise or 
signal model.

❖ Known cases identified 
through low !

ϵ

ϵ

29
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Future challenges
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❖ DINGO (Deep INference for Gravitational 
wave Observations) under review to be 
used by LVK for PE.

❖ Various extensions to pursue:

- Additional physics: eccentricity, GR 
deviations, lensing etc. (in progress).

- Signal duration: extension to BBH with 
component masses below 10, NSBH and 
BNS is a priority.

- Population inference: use DINGO to 
provide samples to standard methods or 
output population posterior directly.

- Instrumental realism: exploit simulation 
based inference to move away from 
Gaussian approximation.

- Overlapping signals: necessary for 3G 
detectors and LISA. 16



Summary
❖ Gravitational wave science relies on obtaining parameter posterior distributions for 

all observed sources. Multi-messenger applications require rapid estimation of sky 
position, and perhaps other parameters.

❖ Current PE codes are computationally intensive—need new methods that are fast, 
robust and accurate.

❖ Neural posterior estimation is a new, machine learning approach that now has 
comparable performance to standard methods in a fraction of the time. Training cost 
is amortised, allowing near real-time analysis of new observations.

❖ Code under internal review to be used within the LVK for analysis of future events.

❖ Many developmental challenges remain: long waveforms, non-stationary noise, 
new sources, overlapping sources, population inference….
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