

JUNO physics prospects and status

João Pedro Athayde Marcondes de André for the JUNO Collaboration

IPHC/IN2P3/CNRS

The JUNO Collaboration

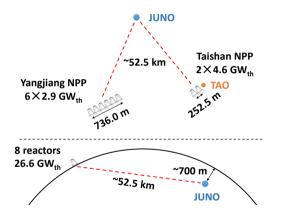
Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	SYSU	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China 🔮	Tsinghua U.	Germany	U. Tuebingen
Brazil	PUC	China 🔊	UCAS	Italy	INFN Catania
Brazil	UEL	China 😒	USTC	Italy	INFN di Frascati
Chile	PCUC	China	U. of South China	Italy	INFN-Ferrara
Chile 🔧	SAPHIR	China	Wu Yi U.	Italy	INFN-Milano
Chile	UNAB	China	Wuhan U.	Italy	INFN-Milano Bicocca
China 🗧	BISEE	China	Xi'an JT U.	Italy	INFN-Padova
China	Beijing Normal U.	China	Xiamen University	Italy	INFN-Perugia
China	CAGS	China 🖉	Zhengzhou U.	Italy Star	INFN-Roma 3
China	ChongQing University	China 🖉 🔶	NUDT	Latvia	IECS .
China	CIAE	China 🦷	CUG-Beijing	Pakistan	PINSTECH (PAEC)
China	DGUT	China	ECUT-Nanchang City	Russia	INR Moscow
China	Guangxi U.	China	CDUT-Chengdu	Russia	JINR
China	Harbin Institute of Technology	Czech	Charles U.	Russia	MSU
China	IHEP	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National Taiwan U.
China	Nanjing U.	France	CPPM Marseille	Taiwan-China	National United U.
China	Nankai U.	France	IPHC Strasbourg	Thailand	NARIT
China	NCEPU 📉 🛩	France	Subatech Nantes	Thailand	PPRLCU
China	Pekin U.	Germany	RWTH Aachen U.	Thailand	SUT
China	Shandong U.	Germany	TUM	U.K.	U. Warwick
China	Shanghai JT U.	Germany	U. Hamburg	USA	UMD-G
China	IGG-Beijing	Germany	FZJ-IKP	USA	UC Irvine

75 institutes, over 650 collaborators

JUNO physics

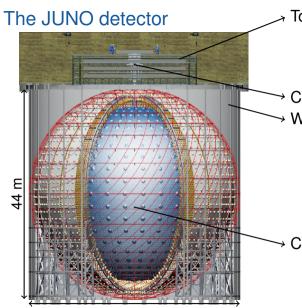
"Neutrino Physics with JUNO," J. Phys. G **43** (2016) no.3, 030401 "JUNO Physics and Detector," Prog. Part. Nucl. Phys. **123** (2022), 103927

- Neutrino Mass Ordering (NMO)
- Precision measurement of oscillation parameters
- Atmospheric neutrinos
- Geoneutrinos

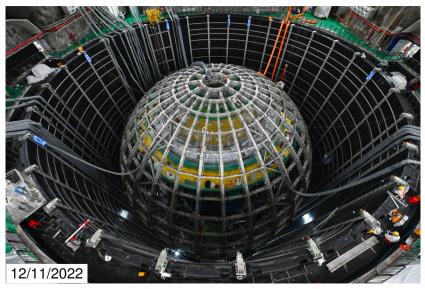

- Supernova (SN) neutrinos
- Diffuse SN neutrino background
- Solar neutrinos
- Nucleon decay & Exotic searches

Research Expected signal		Energy region	Major backgrounds
Reactor antineutrino	r antineutrino 60 IBDs/day		Radioactivity, cosmic muon
Supernova burst	$5000~\mathrm{IBDs}$ at 10 kpc	$0{-}80~{\rm MeV}$	Negligible
	2300 elastic scattering		
DSNB (w/o PSD)	2-4 IBDs/year	$10 – 40~{\rm MeV}$	Atmospheric ν
Solar neutrino hundreds per year for ⁸ B		$016~\mathrm{MeV}$	Radioactivity
Atmospheric neutrino hundreds per year		$0.1100~\mathrm{GeV}$	Negligible
Geoneutrino	$\sim 400~{\rm per}$ year	$0-3 {\rm ~MeV}$	Reactor ν

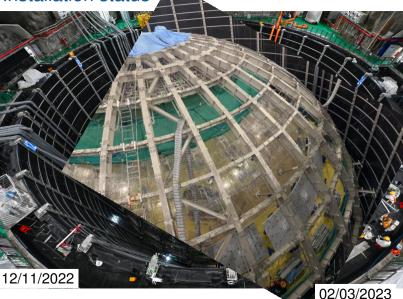
JUNO requirements


- Large statistics
 - Large target mass
 - Powerful nuclear power plants (NPPs)
 - ★ Particularly for NMO and precision measurement of oscillations
- Very good energy resolution
 - Very high PMT coverage
 - High transparency of LS
 - High PMT efficiency
- Low background
 - ~700 m rock overburden
 - Veto system with >99.5% efficiency
 - Material screening
 - Attention to installation procedure & clean environment
 - ***** For solar ν tighter radiopurity requirement
- Precise reference spectra of NPPs
 - Particularly for NMO and precision measurement of oscillations
 - Satellite detector \rightarrow JUNO-TAO

JUNO site


• Civil construction finished: 12/2021

- → Top Tracker (TT)
 - Precise $\hat{\mu}$ tracker
 - 3 layers of plastic scintillator
 - ullet \sim 60% of area above WCD
- → Calibration House
- → Water Cherenkov Detector (WCD)
 - 35 kton ultra-pure water
 - 2.4k 20" PMTs
 - High μ detection efficiency
 - Protects CD from external radioactivity & neutrons from cosmic-rays
- \rightarrow Central Detector (CD) $\bar{\nu}$ target
 - Acrylic sphere with 20 kton liquid scint.
 - 17.6k 20" PMTs + 25.6k 3" PMTs
 - 3% energy resolution @ 1 MeV


43.5 m (Acrylic Sphere: $\emptyset = 35.4$ m)

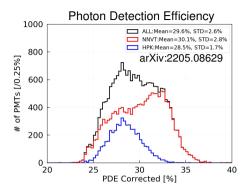
Installation status

- Water pool liner: installed
- Supporting structure: installed
- Acrylic panels: being installed!

Installation status

- Water pool liner: installed
- Supporting structure: installed
- Acrylic panels: being installed!

 PMTs: being installed!

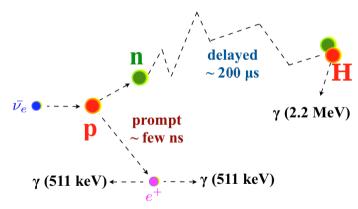

The JUNO detector – CD & WCD PMTs

- 17612 (CD) + 2400 (Veto) 20" PMT
 - ► 5k Hamamatsu (HPK) PMTs, 15k NNVT PMTs
 - worst NNVT PMTs used in Veto
- 25600 3" PMT
- All PMTs produced & tested & waterproofed
- Electronics assembly ongoing

3 mm clearance between PMTs

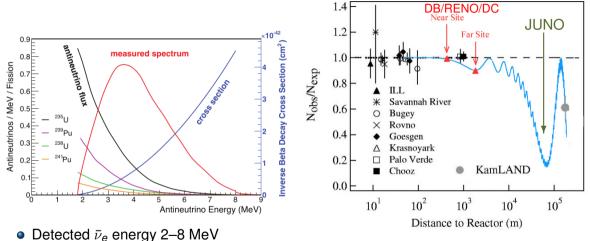
Int. Conf. on the Physics of the Two Infinities

NNVT PDE requirement: 27%


- NNVT PDE measured: 30%
 - 11% more photons detected!

NNVT: North Night Vision Technology

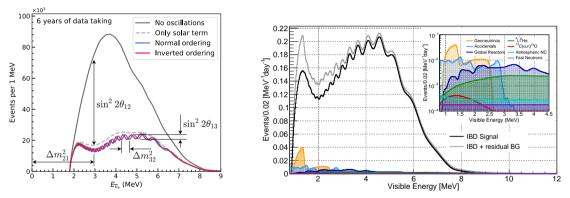
March 28th, 2023


Measuring reactor $\bar{\nu}_e$: Inverse Beta Decay (IBD)

- Detected via IBD: $\bar{\nu}_e + p \rightarrow n + e^+$
 - IBD used since discovery of $\bar{\nu}$
 - Prompt+delayed signal \Rightarrow large background suppression

• $E_{vis}(e^+) \simeq E(\bar{\nu}) - 0.8 \text{ MeV} \leftarrow \text{used to as proxy for antineutrino energy}$

Neutrino oscillations with Reactor Antineutrinos

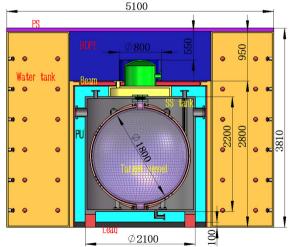

- Distance: selects "oscillation regime"
 - JUNO at maximum $\bar{\nu}_e$ disappearance
 - First experiment to see both Δm^2

• Only sensitive to $\bar{\nu}_{P} \rightarrow \bar{\nu}_{P}$

Int. Conf. on the Physics of the Two Infinities

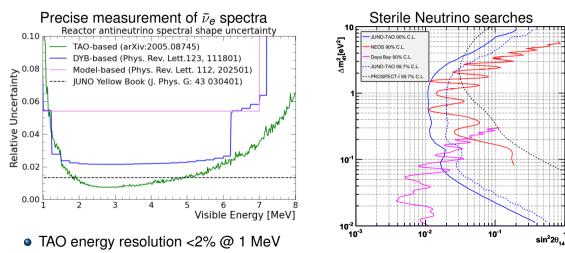
Expected reactor $\bar{\nu}_e$ spectrum in JUNO

"Sub-percent precision measurement of neutrino oscillation parameters with JUNO," Chin. Phys. C 46 (2022) no.12, 123001



- Energy resolution smears low energy oscillations
 - critical importance of energy resolution

JUNO-TAO

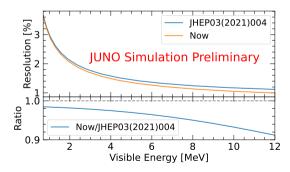

"TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution," arXiv:2005.08745

- JUNO-TAO provides reference for reactor spectrum
- Better energy resolution than JUNO (4500 PE/MeV)
- JUNO-TAO detector:
 - 1 ton fiducial volume Gd-LS detector
 - 30 m from one of Taishan's 4.6 GW_{th} reactor core
 - ► 30× JUNO event rate
 - 10 m² SiPM of 50% photon detection efficiency (PDE) operated at -50°C
 - >95% photo-coverage

JUNO-TAO - Physics potential

"TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution," arXiv:2005.08745

Updates to reactor $\bar{\nu}_e$ analysis • Several updates since 2016


- better PMT detection efficiency
- Iower radioactive background
- 2 less reactor cores at Taishan
- overburden reduced by \sim 50 m
- improved algorithms for veto strategy
- $\bar{\nu}_e$ spectrum from JUNO-TAO

	•

Event type	Rate [/day]	Relative rate uncertainty	Shape uncertainty
Reactor IBD signal	60 🗲 47	-	-
Geo-v's	1.1 → 1.2	30%	5%
Accidental signals	0.9 → 0.8	1%	negligible
Fast-n	0.1	100%	20%
⁹ Li/ ⁸ He	1.6 → 0.8	20%	10%
¹³ C(<i>α</i> , <i>n</i>) ¹⁶ O	0.05	50%	50%
Global reactors	0 → 1.0	2%	5%
Atmospheric $\nu's$	0 → 0.16	50%	50%

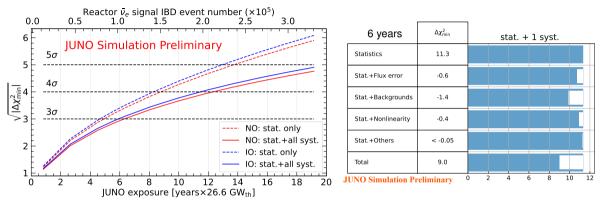
Energy resolution update

JUNO Simulation Preliminary	Resolution	Ref. poster @ Neutrino 2022
Estimated with PE yield	3.0%	JHEP03(2021)004
20-inch PMT PDE (27% \rightarrow 30.1%)	-	Mass testing data
More realistic optical model	-	10.5281/zenodo.6785356
New detector geometries	-	10.5281/zenodo.6805544
Now	2.9%	10.5281/zenodo.6804557

Note: not all analyses using new numbers yet!

J. Phys. G 43:030401 (2016) -> this update

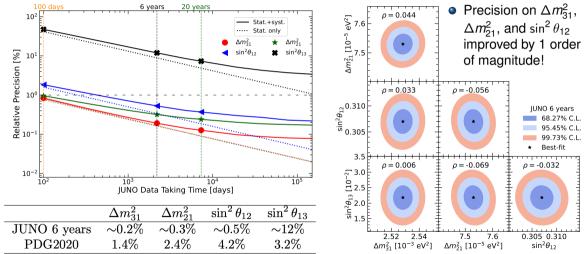
J. P. A. M. de André for JUNO


Int. Conf. on the Physics of the Two Infinities

March 28th, 2023

14/23

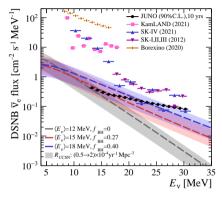
Neutrino Mass Ordering


See poster 10.5281/zenodo.6775075 from Neutrino 2022, paper in preparation

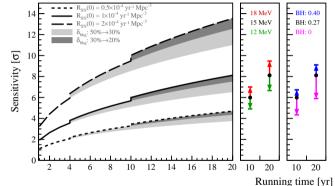
- Reactor only: 3σ in \sim 6 years \times 26.6 GW_{th} exposure
- Working into possibility to combine with JUNO Atmospheric result
- Complementary to other experiments!

Precision Measurement of Neutrino Oscillation Parameters

"Sub-percent precision measurement of neutrino oscillation parameters with JUNO," Chin. Phys. C 46 (2022) no.12, 123001

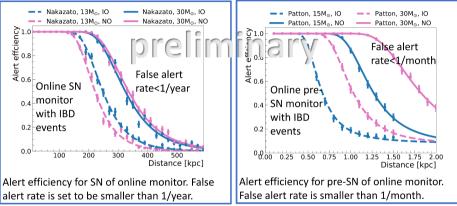


J. P. A. M. de André for JUNO

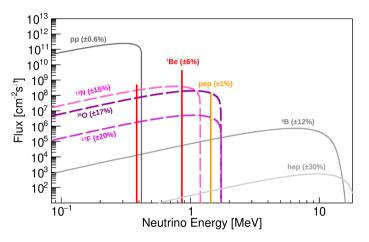

Int. Conf. on the Physics of the Two Infinities

Diffuse Supernova Neutrino Background

"Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO," JCAP 10 (2022), 033

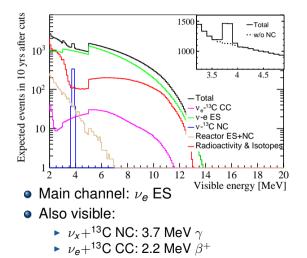

- For reference model:
 - @ 3 years \rightarrow 3 σ sensitivity
 - @ 10 years \rightarrow 5 σ sensitivity

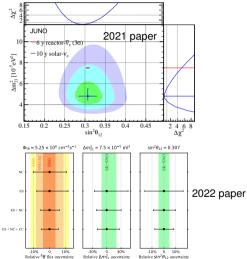
- Improvements in sensitivity due to:
 - Reduced expected background
 - $\blacktriangleright\,$ Increase signal efficiency (50% \rightarrow 80%) w/ PSD
 - Better DSNB model


Core Collapse Supernova Neutrinos

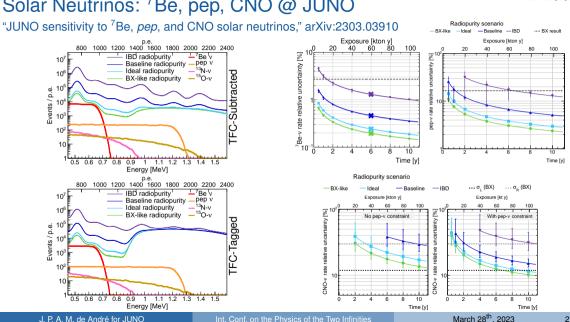
See poster 10.5281/zenodo.6785184 from Neutrino 2022, paper in preparation

- Capability to detect pre-SN neutrinos from close SN-candidates
- >50% efficiency to detect CCSN up to 250–300 kpc
 - $\blacktriangleright\,$ For reference: Milky Way diameter ${\sim}30$ kpc; Andromeda galaxy distance ${\sim}$ 780 kpc


Solar Neutrinos



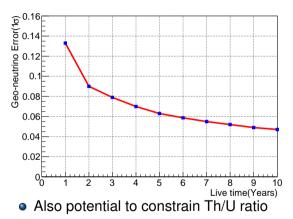
- Nuclear fusion in Sun $\Rightarrow \nu_e$
 - ν energy depends on specific reaction
 - Probe Sun composition
- JUNO expected to be able to measure ⁸B, ⁷Be, pep, CNO
 - Main limitation from radioactive backgrounds


Solar Neutrinos: ⁸B @ JUNO

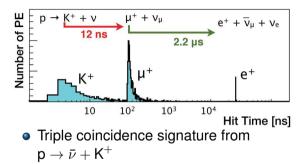
"Feasibility and physics potential of detecting ⁸B solar neutrinos at JUNO," Chin. Phys. C **45** (2021) no.2, 023004 and "Model Independent Approach of the JUNO ⁸B Solar Neutrino Program," arXiv:2210.08437

March 28th, 2023

Solar Neutrinos: ⁷Be, pep, CNO @ JUNO


J. P. A. M. de André for JUNO

Int. Conf. on the Physics of the Two Infinities


*BX: Borexino

21/23

$\begin{array}{c} \text{Other topics in JUNO} \\ \text{Geo } \bar{\nu} \end{array}$

Nucleon decay

• Other nucleon decay modes also being investigated

Among other topics discussed in J. Phys. G **43** (2016) no.3, 030401 and Prog. Part. Nucl. Phys. **123** (2022), 103927

J. P. A. M. de André for JUNO

Int. Conf. on the Physics of the Two Infinities

March 28th, 2023

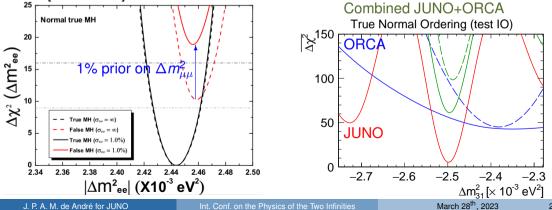
22/23

Conclusions

- JUNO will have unique properties: large target mass & good energy resolution
 - JUNO-TAO for reference reactor spectrum
 - Very large photo-coverage & high LS light yield
 - \blacktriangleright Comprehensive calibration strategy \rightarrow clear path to 3% energy resolution
 - Strict radiopurity requirements
- Precision oscillation measurements with reactor $\bar{\nu}_e$ flux
 - First simultaneous observation of solar and atmospheric oscillations in same experiment
 - Measurement of NMO not relying on matter effects \Rightarrow 3 σ in \sim 6 years (reactor only)
 - < 0.5% precision on $\sin^2 \theta_{12}$, Δm_{21}^2 , and Δm_{32}^2
- Rich physics & astrophysics program beyond reactor- $\bar{\nu}$ analysis
 - DSNB discovery possible within JUNO
 - CCSN field of view extended to \sim 300 kpc
 - Improved precision in Solar ν studies, particularly for some radiopurity scenarios

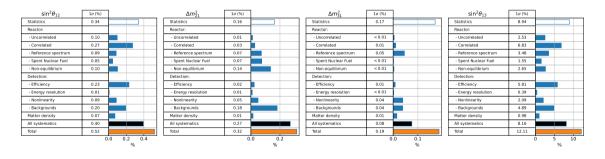
▶ ...

• Detector construction progressing well \Rightarrow data coming soon!

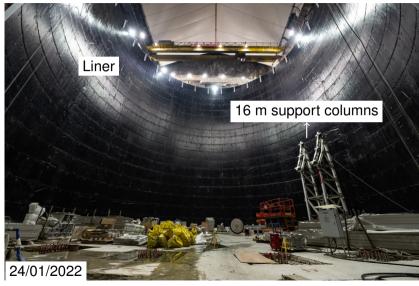

Measuring NMO with reactor neutrinos

method: S. T. Petcov, M. Piai, Phys. Lett. B 533 (2002) 94; formulas: S. F. Ge, et al, JHEP 1305 (2013) 131

$$\begin{split} P_{ee} &= \left|\sum_{i=1}^{3} U_{ei} \exp\left(-i\frac{m_{i}^{2}}{2E_{i}}\right) U_{ei}^{*}\right|^{2} & m^{2} \\ &= 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (\Delta_{21}) \\ &- \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{32}), \\ P_{ee} &= 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} (\Delta_{21}) \\ &- \sin^{2} \theta_{12} \sin^{2} (2\theta_{13} \sin^{2} (\Delta_{21}) \cos (2|\Delta_{31}|) \\ &+ \frac{\sin^{2} \theta_{12}}{2} \sin^{2} 2\theta_{13} \sin^{2} (\Delta_{21}) \cos (2|\Delta_{31}|), \\ &\pm \frac{\sin^{2} \theta_{12}}{2} \sin^{2} 2\theta_{13} \sin (2\Delta_{21}) \sin (2|\Delta_{31}|), \\ &\pm \frac{\sin^{2} \theta_{12}}{2} \sin^{2} 2\theta_{13} \sin (2\Delta_{21}) \sin (2|\Delta_{31}|), \\ &\Delta_{ij} &\equiv \frac{\Delta m_{ij}^{2} L}{4E_{\nu}}, \quad (\Delta m_{ij}^{2} &\equiv m_{i}^{2} - m_{j}^{2}) \\ \bullet & \text{Orderings: Normal} \rightarrow +; \text{Inverted} \rightarrow - \end{split}$$


NMO via combined fits of JUNO and other experiments

- Intrinsic differences between ν_e → ν_e and ν_μ → ν_μ, precise measurements of Δm² obtain different best-fit values for Δm²₃₁ when wrong ordering assumed
 - ▶ JUNO independent of δ_{CP} , θ_{23} , and doesn't rely on matter effects
- Dedicated studies performed with external priors and with other experiments
 - IceCube [1306.3988] & [1911.06745], accelerators [2008.11280], KM3NeT/ORCA [2108.06293]



Precision Measurement of Neutrino Oscillation Parameters: σ

"Sub-percent precision measurement of neutrino oscillation parameters with JUNO," Chin. Phys. C 46 (2022) no.12, 123001

The JUNO detector – inside Water Cherenkov Detector

- 35 kt ultrapure water
- 2400 20" MCP PMTs
- μ det. eff. > 99.5%
- passive shield for radioactivity
- ²²²Rn < 10 mBq/m³
- Keep temperature $@ (21 \pm 1)^{\circ}C$

The JUNO detector – CD Support Structure

 Acrylic Sphere supported by 590 connecting bars

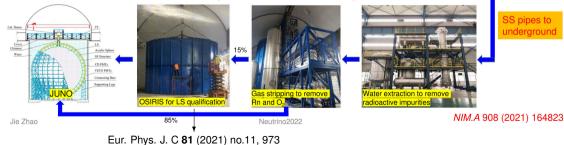
The JUNO detector – CD Support Structure and Lift Platform

 Acrylic Sphere supported by 590 connecting bars

The JUNO detector – CD Support Structure and Lift Platform

- Assembly of SS finished now
- Starting to install acrylic sphere

The JUNO detector – Acrylic Sphere


- 265 acrylic plates
- thickness: 124±4 mm
- radiopurity: U/Th/K < 1 ppt
- Each plate:
 - polished
 - cleaned
 - PE protective film added
- PE film to be removed after installation

The JUNO detector – Liquid Scintillator

Four purification plants to achieve target radio-purity 10⁻¹⁷ g/g U/Th and 20 m attenuation length at 430 nm.

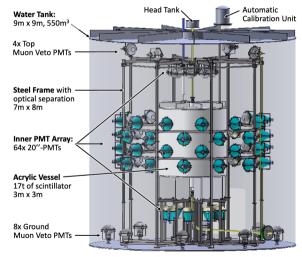
All the LS related systems will finish assembly in summer.

J. P. A. M. de André for JUNO

Int. Conf. on the Physics of the Two Infinities

March 28th, 2023

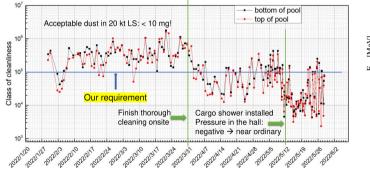
33/23

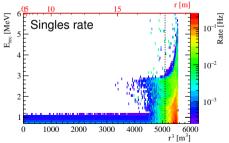

The JUNO detector – OSIRIS

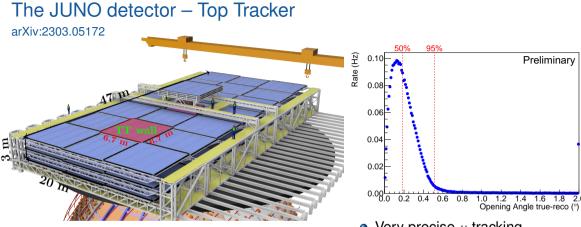
"The design and sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS", Eur. Phys. J. C 81 (2021) no.11, 973

- Monitor LS radiopurity during before/during filling
- Few days: U/Th $\sim 10^{-15}$ g/g (IBD requirement)
- 2–3 weeks: U/Th \sim 10 $^{-17}$ g/g (solar "ideal" case)
- Can also measure ¹⁴C, ²¹⁰Po, ⁸⁵Kr
- Start commissioning in July

J. P. A. M. de André for JUNO

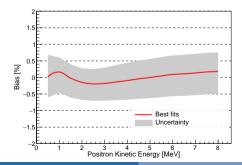


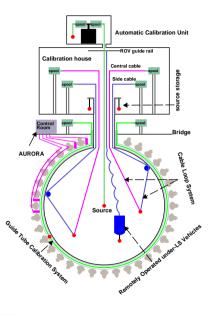

Int. Conf. on the Physics of the Two Infinities


Radiopurity control

- LS recirculation impossible
 - Need to reach target radiopurity from start!
- Clean evironment during installation
 - Class 100k in WCD
 - Class 1k inside Acrylic Sphere!

- Careful screening & handling of all materials
 - Overall 15% noise reduction from design
 - "Radioactivity control strategy for the JUNO detector," JHEP 11 (2021), 102

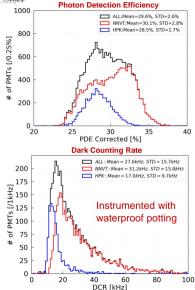

- Refurbished from OPERA experiment
- All plastic scintillator modules already in China
- New supporting structure designed


- Very precise μ tracking
 - $\blacktriangleright~2.6\times2.6~cm^2$ XY granularity
 - 0.2° median angular resolution
- Provide well reconstructed μ sample for other systems

Calibration strategy

"Calibration Strategy of the JUNO Experiment," JHEP 03 (2021), 004

- Requirement: control energy scale, detector response non-uniformity and energy non-linearity
- 1D, 2D and 3D scan systems
- Many radioactive sources used
- 3" PMTs: correct any intrinsic 20" PMT non-linearity


J. P. A. M. de André for JUNO

Int. Conf. on the Physics of the Two Infinities

Photomultiplier Tubes

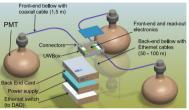
All PMTs produced, tested, and instrumented with waterproof potting

		LPMT (20)-inch)	SPMT (3-inch)	
		Hamamatsu	NNVT	HZC	
Quantity		5000	15012	25600	
Charge Collection	า	Dynode	MCP	Dynode	
Photon Detection Efficiency		28.5%	30.1%	25%	
Mean Dark Count Rate	Bare	15.3	49.3	0.5	
[kHz]	Potted	17.0	31.2	0.5	
Transit Time Spread (σ) [ns]		1.3	7.0	1.6	
Dynamic range for [0-10] MeV		[0, 100] PEs		[0, 2] PEs	
Coverage		75%		3%	
Reference		arXiv: 2205.08629		NIM.A 1005 (2021) 165347	

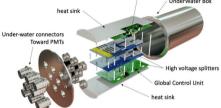
12.6k NNVT PMTs with highest PDE are selected for light collection from LS and the rest are used in the Water Cherenkov detector.

Neutrino2022

Electronics Posters: #216, # 218, #270


Front-End board

Underwater electronics to improve signal-to-noise ratio for better energy resolution



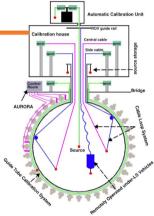
3 20-inch PMTs connected to one underwater box

128 3-inch PMTs connected to one underwater box

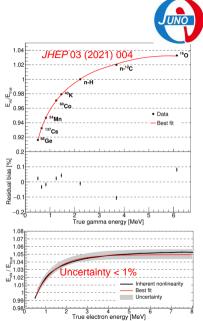
Electronics assembly ongoing

Poster: #293

Calibration


1D,2D,3D scan systems with multiple calibration sources to control the energy

scale, detector response non-uniformity, and < 1% energy non-linearity



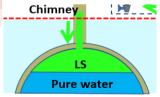
Cable system finished prototype test

Shadowing effect uncertainty from Teflon capsule of radioactive sources: < 0.15%

Neutrino2022

Radiopurity control

Reduced by 15% compared to the design. Ref: JHEP 11 (2021) 102

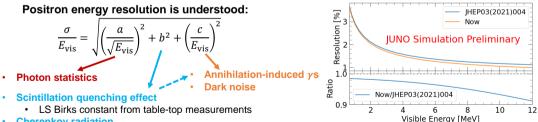

Singles (R < 17.2 m, E > 0.7 MeV)	Design [Hz]	Change [Hz]	Comment
LS	2.20	0	
Acrylic	3.61	-3.2	10 ppt -> 1 ppt
Metal in node	0.087	+1.0	Copper -> SS
PMT glass	0.33	+2.47	Schott -> NNVT/Ham
Rock	0.98	-0.85	3.2 m -> 4 m
Radon in water	1.31	-1.25	200 mBq/m ³ -> 10 mBq/m ³
Other	0	+0.52	Add PMT readout, calibration sys
Total	8.5	-1.3	

Radiopurity control on raw material:

- ✓ Careful material screening
- ✓ Meticulous Monte Carlo Simulation
- ✓ Accurate detector production handling

Liquid Scintillator Filling

- ✓ Recirculation is impossible at JUNO due to its large size
- \rightarrow Target radiopurity need to be obtained from the beginning
- ✓ Strategies:
- 1. Leakage (single component < 10⁻⁶ mbar·L/s)
- 2. Cleaning vessel before filling
- 3. Clean environment
- 4. Water/LS filling



Update of energy resolution

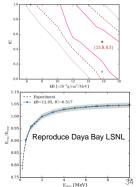
Change	Light yield in detector center [PEs/MeV]	Energy resolution	Reference
Previous estimation	1345	3.0% @1MeV	JHEP03(2021)004
Photon Detection Efficiency (27%→30%)	+11% ↑		arXiv: 2205.08629
New Central Detector Geometries	+3%↑	2.9% @ 1MeV	Poster #184
New PMT Optical Model	+8%↑	(Poster #519)	<i>EPJC 82 329 (2022)</i> Poster #815

- Cherenkov radiation
 - Cherenkov yield factor (refractive index & re-emission probability) is re-constrained with Daya Bay LS non-linearity
- Detector uniformity and reconstruction

Positron energy resolution

0.8

Neutrino⁵


- Firstly attempt to constrain kB & fC with Daya Bay LS nonlinearity
 - Strong correlation between kB and fC
- Solved by combining a series of table-top measurements on scintillation quenching effect
 - kB of LS is determined to be 12.05×10^{-3} g/cm²/MeV

 $kB = 12.05 \times 10^{-3} \text{g/cm}^2/\text{MeV}$

Deference 14

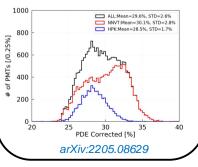
Electron data

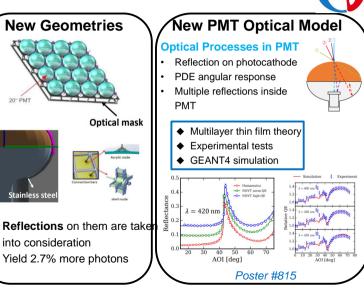
- Re-constrain fC with Dava Bay LS non-linearity
 - fC is determined to be 0.517

 $\frac{\sigma}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + b^2 + \left(\frac{c}{E}\right)^2}$ Photon statistics

- Annihilation-induced vs Dark noise
- Scintillation quenching effect
 - LS Birks constant (kB)
- **Cherenkov radiation**
 - LS refractive index
 - LS re-emission probability
 - Cherenkov yield scale factor (fC)
- **Detector uniformity and reconstruct**
- kB & fC are key parameters to predict energy resolution

Jie Zhao




Light yield evolution

PMT PDE

- Averaged PDE:27.0%→30.1%
- 27.0% is based on the original requirement of QE~30%, CE~90%
- 30.1% is the selected mean PDE, from **PMT mass testing system**

