

Observations at the tera-electronvolt of the extragalactic sky: a selection of important results

D. A. Sanchez, LAPP/CNRS, France

Astrophysics at the Tera-electronvolt

The major VHE experiments

Imaging Atmospheric Cherenkov Telescope

Different types of sources

- Actives Galactic Nuclei
- GRBs
- Starburst

More fundamental physique

- Extragalactic background light
- Lorentz invariance violation
- Axion-like particles, DM

Centaurus A: our close neighbour

AGNs and Blazars

Blazars can not be resolve by IACTs. How to locate the emission zone?

- 10% of galaxies are Active
- 10% of AGN have a jet

In TeV energies

- 80 Blazars
- 4 Radio-Galaxies
- 2 Unknow types

AGNs and Blazars

- 10% of galaxies are Active
- 10% of AGN have a jet

In TeV energies

- 80 Blazars
- 4 Radio-Galaxies
- 2 Unknow types

Scale of Centaurus A

First Extended extragalactic source

Extragalactic Background light

Extragalactic background light

- Infrared light from dust and galaxies
- Difficult to measure it from Earth
- Energy budget of the Universe
- Cosmology
- Galaxies formation and population

APP

Probing the Univers content

University of Kyoto, 27/02/2023

David Sanchez, LAPP, Annecy

Veritas ArXiv : 1910.00451

The Transient sky @ TeV energies

The detection of Gamma-ray burst

US military VELA program 7 pairs of satellites: 1963-70 → 1984

- MWL observation
 - From Radio to GeV energies
 - "canonical" light-curves in X-ray
 - Prompt and afterglow phases
 - More than 169 GRBs seen by LAT (>100MeV)

- MWL observation
 - From Radio to GeV energies
 - "canonical" light-curves in X-ray
 - Prompt and afterglow phases
 - More than 169 GRBs seen by LAT (>100MeV)

- No TeV detection ...
 - Difficult detections by IACTs
 - Fast even, could be at very high z

- **GRB 190114C** (MAGIC Coll., Nature, 2020)
 - 50 sigma detection
- GRB 180720B (H.E.S.S. Coll., Nature, 2020)
- GRB 190829A (H.E.S.S. Coll., Science, 2021)
 - For **3 nights**, low lum GRB?
- GRB 201216C (MAGIC Coll. ICRC021, S.Fukami)
 - Large value of z=1.1
- **GRB 221009A** (LHAASO, GCN 32677)
 - 18 TeV photons ?

- **GRB 190114C** (MAGIC Coll., Nature, 2020)
 - 50 sigma detection
- GRB 180720B (H.E.S.S. Coll., Nature, 2020)
- GRB 190829A (H.E.S.S. Coll., Science, 2021)
 - For **3 nights**, low lum GRB?
- GRB 201216C (MAGIC Coll. ICRC021, S.Fukami)
 - Large value of z=1.1
- GRB 221009A (LHAASO, GCN 32677)
 - 18 TeV photons ?

.

•

- **GRB 190114C** (MAGIC Coll., Nature, 2020)
 - 50 sigma detection
- GRB 180720B (H.E.S.S. Coll., Nature, 2020)
- GRB 190829A (H.E.S.S. Coll., Science, 2021)
 - For **3 nights**, low lum GRB?
- GRB 201216C (MAGIC Coll. ICRC021, S.Fukami)
 - Large value of z=1.1
- GRB 221009A (LHAASO, GCN 32677)
 - 18 TeV photons ?

- 1) All detected GRB are long
- 2) Detection of afterglow days after T0
- 3) Extrem energies reached

The detection of Gamma-ray bursts

Similar trend in X-ray and TeV -> same population of particles ?

Hints for a two-component SED **one zone SSC ?**

X-ray spectrum extrapolation to the VHE domain Synchrotron only ?

MAGIC Arxiv : 2006.07251

Multi-messenger astronomy

IC 170922A / TXS 0506+056

September 22 2017: IceCube alert September 28 2017: Fermi-LAT detection of a gamma-ray flare from TXS 0506+056 consistent with the location of neutrino event IC 170922A (Atel #10791)

October 04 2017: MAGIC report detection at VHE (obs 28 Sept) (Atel #10817)

TXS 0506+056, first neutrino-blazar link

- Models has to include hadrons
- source of RC?
- Hint of hadronic component in blazars

IceCube, Fermi, MAGIC et al. 2018

Multi-messenger

H.E.S.S. observationsUse of tilling methodsNo TeV detection of this event

Right Ascension (J2000)

Current generation operates since early 2000

- 1 source per publication
- Few objects detected

Last 15 years has seen a change in paradigm

- Catalogs
- Transient sources
- Exploring other topics in physics

Multiwavelength, multi-messenger...

Detection of several blazars and Crab pulsar

BL Lac (2021) First detection of this flare by IACTs

15823

 10^{-9}

10-2

 $E^{2\frac{d\phi}{dE}}$ [erg cm⁻² s⁻¹]

NGC 1275 (2022)

Previous | Next | ADS]

Detection of enhanced very-high-energy gamma-ray emission from the radio-galaxy NGC1275 with the LST-1

ATel #15819; Juan Cortina (CIEMAT) for the CTA LST collaboration on 21 Dec 2022; 22:29 UT Credential Certification: Juan Cortina (Juan Cortina@ciemat.es)

Subjects: Gamma Ray, TeV, VHE, AGN, Transient

Referred to by ATel #: 15820, 15823, 15852, 15856, 15938

W Terret

The LST-1 telescope has observed an increase in the very-high-energy (VHE; >100 GeV) gamma-ray flux from the radio-galaxy NGC1275 (RA=03:19:48.1, DEC=+41:30:42, J2000.0). The LST-1 observed NGC1275 on the night of December 20 to December 21, 2022 (MJD 59934), triggered by an increase in gamma-ray flux detected by MAGIC and Fermi-LAT. In the preliminary offline analysis of the LST-1 data, NGC1275 has been detected with a significance of more than 10 sigma with an average flux of approximately 3.0 x 10^-10 cm^-2 s^-1 above 100 GeV, i.e. 70% that of the Crab Nebula, varying from 140% to below 30% at the beginning and at the end of the observation, respectively. Note though that this is the result of a quick-look analysis. The LST-1 observations were performed during commissioning which began in 2018. LST-1 is a prototype of the Large Sized Telescope for the Cherenkov Telescope Array and is located on the Canary island of La Palma, Spain. The LST-1 is designed to perform gamma-ray astronomy in the energy range from 20 GeV to 3 TeV. LST-1 observations on NGC1275 will continue during the next few nights, multi-wavelength observations are encouraged. The preliminary offline analysis has been performed by Chaltanya Priyadarshi (cpriyadarshi@ifae.es) and Seiya Nozaki (nozaki@mpp.mpg.de). The LST-1 contact persons for these observations are Juan Cortina (juan.cortina@ciemat.es), Masahiro Teshima (mteshima@mppmu.mpg.de) and Mireia Nievas (mnievas@iac.es)

E [TeV]

 10^{-1}

10

10⁰

Detection of TeV photons

More than 250 sources both Galactic and Extragalactic

http://tevcat.uchicago.edu/

EBL effet at TeV

Absorption is used to Gamma-Gamma interaction

- Effect if z-dependent
- Non-linear effect -> footprint

$$\phi(\theta) = \phi(N, \Gamma, z) = N \times (E/E_0)^{-\Gamma} \times e^{-\tau(z)}$$

Effect can be seen in TeV with enough statistic

Evolution of the EBL with redshift

