Interplay between Cosmology and Neutrino Physics

International Conference on the Physics of the Two Infinities - Kyoto, 27 Mar 2023 Martina Gerbino - INFN Ferrara

What's in a neutrino?

Neutrino flavour oscillations -> neutrinos have a mass! Kajita&McDonald 2015 Nobel prize

Cannot explain neutrino mass with SM content

Martina Gerbino

 $0.06 \,\mathrm{eV} < \Sigma m_{\nu} < 2.4 \,\mathrm{eV}$ **From oscillations** From b-decay

		Neutrino		
$T \sim 1 \mathrm{MeV}$				
Coupled	Weak int. rate = Hubble rate	Decouple and not cluster		
Scale factor 'a' increases				

Martina Gerbino

cosmology tivistic Non-Relativistic $T \sim m_{\nu}$

Temperature 'T' increases

Neutrino cosmology

Martina Gerbino

		Neutrino		
$T \sim 1 \mathrm{MeV}$				
Coupled	Weak int. rate = Hubble rate	Decouple and not cluster		
Scale factor 'a' increases				

Martina Gerbino

cosmology tivistic Non-Relativistic $T \sim m_{\nu}$

Decoupled

and

clustering

d Non-relativistic transition ing at large scales

— Temperature 'T' increases

$$Relation Relation Relation$$

Distorsions due to non-inst decoupling radiative corrections, flavour oscillations Dolgov, 1997, Mangano+, 2005 Bennett+2020, Froustey+2020, Akita+2020

Scale factor 'a' increases —

Martina Gerbino

Temperature 'T' increases

Neutrinos and Cosmology

 $m_{\nu} < 400 \,\mathrm{eV} \quad (\rho_{\nu} < \rho_{\mathrm{tot}})$ $m_{\nu} < 8 \,\mathrm{eV} \quad (\rho_{\nu} < \rho_{\mathrm{DM}})$

Gershtein-Zeldovich (1966) **Cowsik-McClelland (1972)**

lower bounds for very heavy neutrinos + Szalay&Marx(1976) Hut; Lee&Weinberg; Sato&Kobayashi(1977)

+ from numerical sims structure formation with hot DM is top-down, incompatible with observations (1980s)

Martina Gerbino

Pioneering and stringent bounds on neutrino properties from Cosmology already competitive with lab

 $N_{\nu} < 4$

Schramm&Kawano (1989) **Olive+ (1990)**

(Stringent) bound on the family number required not to spoil BBN

The route to precision cosmology

Martina Gerbino

Martina Gerbino

Current limits on the mass sum

Martina Gerbino

Current limits on the mass sum

-1-

Current limits on Neff

Martina Gerbino

SPT Collaboration (Dutcher+, Balkenhol+), 2021 ACT Collaboration (Aiola+), 2020 VI 2018 Planck collaboration,

Current limits on Neff

Martina Gerbino

Current cosmology in agreement with standard neutrino decoupling

Extra species thermalising after QCD-PT excluded at high significance (e.g., light sterile neutrino)

), 2021

What next in neutrino cosmology

A new generation of ultimate cosmological surveys is approaching: Simons Observatory, Euclid, LiteBIRD, CMB-S4, DESI, LSST, SPHEREX, **SKA** **Does it mean that we are moving:**

Towards the first detection of the neutrino mass scale?

 $\sigma(\Sigma m_{\nu}) = 0.02 \,\mathrm{eV}$

2) Towards the first probe of the physics of neutrino decoupling, and of **BSM content at very early times?**

$$\sigma(N_{\rm eff}) = 0.03$$

Martina Gerbino

A joint effort: synergy between cosmology, 0n2b decay, b-decay and oscillation experiments is key to convince ourselves of the robustness of the results

Gerbino, Grohs, Lattanzi,+, 2022

Martina Gerbino

A joint effort: synergy between cosmology, 0n2b decay, b-decay and oscillation experiments is key to convince ourselves of the robustness of the results

Gerbino, Grohs, Lattanzi,+, 2022

Martina Gerbino

Martina Gerbino

If Smnu large and ordering is inverted from oscillations -> neutrinos are Dirac

Gerbino, Grohs, Lattanzi,+, 2022

Scenario 3: 0n2b measurement, no cosmology measurement LCDM model could be wrong: modifications to cosmology? Modifications to cosmic neutrino properties? New interactions, unstable neutrinos? Scenario 4: discordant cosmo, 0n2b, b-decay measurements LCDM and/or 0n2b predictions wrong? New physics?

Martina Gerbino

zi,+, 2022 'Mar23

Cosmology is a well established route to discoveries in the neutrino sector

Data are coming soon that can lead to first-ever measurement of the mass sum

Synergy with lab-based experiments is key to robust discoveries

Martina Gerbino

Conclusions

Martina Gerbino

Martina Gerbino

BSM neutrinos?

What if they are not what we think? (or: how sensitive are we to standard assumptions?) $T \sim m_{\nu}$

> Decoupled and clustering at large scales?

transition Non-relativistic

Neutrino effects on CMB and matter PS

Martina Gerbino

Physics of the 2 infinities, Kyoto, 27Mar23

'Mar23

Neutrino stability over cosmic times

Mass bounds relaxed for neutrinos decaying when non-relativistic and close to recombination Updated and improved bounds with more careful treatment (Barenboim+, 2021; Chen+, 2022)

Martina Gerbino

Neutrino non standard interactions

Neutrino self-interactions Forastieri+,2019; Kreisch+,2019; Brinckmann+,2021; Taule+,2022; Kreisch+(ACT),2022; ...

With current data, no (significant) hints for deviations from the SM.

Martina Gerbino

Neutrinos interact only via weak interactions with other particles What if new interactions are yet to be discovered?

$$\mathcal{L}_{SM} = -2\sqrt{2} G_F \left[\left(\overline{\nu}_e \gamma^\mu P_L e \right) \left(\overline{e} \gamma_\mu P_L \nu_e \right) + \sum_{X,\alpha} g_X \left(\overline{\nu}_\alpha \gamma^\mu P_L \nu_\alpha \right) \left(\overline{e} \gamma_\mu P_X e \right) \right] \right]$$
$$\mathcal{L}_{NSIe} = -2\sqrt{2} G_F \sum_{\alpha,\beta} \varepsilon^X_{\alpha\beta} \left(\overline{\nu}_\alpha \gamma^\mu P_L \nu_\beta \right) \left(\overline{e} \gamma_\mu P_X e \right) .$$

Neutrino-electron non-standard interactions de Salas+,2021; Mangano+,2006; ...

Cosmology can place complementary and competitive bounds to laboratory searches on these NS properties

See Thejs's talk on Tuesday!

Current CMB is insensitive to details of the distribution function; future CMB may be mildly sensitive; LSS surveys may be more sensitive

. . .

BSM particle species

Cosmology is (mostly) sensitive to the neutrino contribution to the energy density

What if there is more than neutrinos contributing to it?

Martina Gerbino

Light sterile in cosmology

Hagstotz+(incl.MG), 2020; Gariazzo+, 2020

Martina Gerbino

Martina Gerbino

Challenges ahead

THEORY

- cosmology side: modelling of small scales/non-linear scales
- particle physics side: test accuracy&approximations, link theory&phenomenology (what are we really measuring?)
- computational side: can we afford required precision level?

Challenges ahead

INSTRUMENT&DATA

- know your instrument: perfect knowledge of instrumental systematic effects
- know your data: perfect knowledge of what features in the data drive constraints
- combine your data: be coherent (in modelling) and account for (cross)correlations; propagate all (theory&instrument) uncertainties

Challenges ahead

INTERPRETATION

- be statistically accurate and robust (especially if you measure something)

cosmology is not alone: key comparison&collaboration with complementary avenues (lab, astro, etc)

