International Conference on the Physics of the Two Infinities 2023

A Study of Applications of **Neutron Capture Signal for the T2K Experiment**

Seidai Tairafune for the T2K collaboration (Tohoku University)

1. T2K Experiment

- A long-baseline neutrino oscillation experiment.
- Measure neutrino oscillation parameters, and search for CP violation in the leptonic sector.

Oscillation probability ($\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance mode)

$$P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \theta_{23}$$

L : Length of flight [km] E_{ν} : Energy of neutrino [GeV]

$$heta_{ij}$$
: Mixing angles Δm_{ij}^2 : The mass squared differences [eV²]

2. Application of Neutron Signal at T2K

- Neutron multiplicity gives information of interaction type.
- **Sensitivity for** θ_{23} and $|\Delta m_{32}^2|$ would be improved by separating v interactions. Large uncertainty of neutron multiplicity in hadronic final-state-

3. Purposes of This Study

وo و		-			
	1				
ŝ			JZZ)	
In		~75% capture	e		
àp	0.8	efficiency			
		ernoroney	/		
		-			
	0.6	-			
Га		-	/		
_					
	U.	.01% Gd (2020)			
	~	50% capture /			
		ficiency			
		псістсу			
	0.2				

 Gd is loaded into the Super-Kamiokande detector, and high efficiency neutron tagging is now available.

Estimate sensitivity improvements from the separation of v interactions via neutron

4. Primary Selection

- Focus on 1-ring µ-like sample.
- Neutron capture signal is a delayed signal, and it can be mimicked by a decay electron.
- Efficiency of v events from fully-contained fiducial volume cut is $\sim 60\%$.

Separation of decay electrons and neutron capture signal

тоноки

 $1.27\Delta m_{32}^2 L$

5. Neutron Tagging Algorithm

- There are two steps for neutron tagging(NTag):
- **Pre-selection**
 - Search PMT hit clusters.

The past NTag used ToF-subtracted hit time for proton-captured neutrons. In this analysis, use raw PMT hit time to avoid large bias of neutron flight distance from n-nucleus interaction model. (ToF = time of flight between the primary vertex and PMT)

2. Neural network(NN) classification

- Use 12 input variables:
 - # of hits, angular or isotropic variables to separate neutron signal from accidental noise.

6. Separation of v Interactions via Neutrons

-	Separate 1-ring μ -like sample according		CCQE	CC non-QE	NC	
	to the number of tagged neutrons.	No NTag	72.0%	23.3%	4.6%	
-	Estimate composition of each sample in	w/ neutron	56.2%	36.0%	7.8%	
	term of interaction processes.	w/o neutron	80.6%	16.5%	2.9%	
	Image: Second structed Neutrino Energy E, [GeV]		v-mode 1-ring µ-like sample with 0.01% Gd concentration			
	w/ tagged neutrons		w/o tagged neutrons			
	SE 16 FHC 1R μ sample (0.01% Gd) w/ tagged neutrons	States 16	T2K Wo FHC 1R μ w/o tagged	sample (0.01% Gd) neutrons		

7. Summary

- Applications of high efficient neutron detection can improve oscillation analysis at T2K.
- Separation performance of v interactions via tagged neutrons was estimated, and the purity of CCQE was improved in 1-ring μ -like sample without neutrons.
- Estimation of NTag impacts on oscillation analysis is ongoing. -----
- Measurement and understanding of neutron multiplicity with Gd data are also essential for utilizing neutron information in neutrino experiments.

[1] R. Akutsu, "A Study of Neutrons Associated with Neutrino and AntiNeutrino Interactions on the Water Target at the T2K Far Detector", PhD. thesis (2019) [2] LI. Marti, et. al., "Evaluation of Gadolinium's Action on Water Cherenkov Detector Systems with EGADS" (2020)