- NINJA

Precise measurement of Neutrino Interactions at J-PARC in the NINJA experiment

<u>Tsutomu Fukuda</u> (Institute for Advanced Research/F-lab. Nagoya Univ.) on behalf of the NINJA Collaboration

International Conference on the Physics of Two Infinities, Kyoto, 29th Mar. 2023

Neutrino physics on sub-multi GeV

Most current and future neutrino oscillation experiments are in this energy region

A better understanding of v-nucleus interactions is important for the precise measurement of v oscillations.

Neutrino multi-nucleon interaction

NINJA Experiment

Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator

- Precise measurement of neutrino-nucleus cross-sections in Sub-Multi GeV neutrinos
- Electron neutrino cross-section measurement
- Sterile neutrino search

NINJA Collaboration

JINJA

Nihon University: <u>S. Mikado</u> (***** Spokesperson) Nagoya University: <u>T. Fukuda</u>*, T. Hayakawa, Y. Hirobe, H. Inamoto, G. Iwamoto, A. Kasumi, H. Kawahara, T. Kawahara, T. Kawanago, H. Kobayashi, R. Komatani, M.Komatsu, A. Masuda, T. Matsuo, H. Minami, Y. Morimoto, K. Morishima, M. Nakamura, Y. Nakamura, T. Nakano, N. Naganawa, H. Rokujo, O. Sato, K. Sugimura, L. Suzui, Y. Suzuki, I. Usuda, M. Watanabe, S. Yamamoto Toho University: R. Nakagawa, S. Ogawa, N. Yatabe Kanagawa University: <u>H. Shibuya</u> Kobe University: S. Aoki ICRR, University of Tokyo: Y. Hayato, H. Oshima *IPMU, University of Tokyo:* <u>C. Jesus-Yalls</u> Yokohama National University: S. Ito, A. Minamino, S. Moriyama *Kyoto University:* T. Kikawa, N. Matsushita, <u>T. Nakaya</u>, T. Odagawa, K. Yasutome 52 researchers from 13 Institutes RIKEN: M. Yoshimoto from 3 countries Tohoku University: A. K. Ichikawa Ruđer Bošković Institute: M. Ghosh, L. Halić, <u>B. Kliček</u> King's College London: T. Katori

NINJA Merits using nuclear emulsion

- Neutrino-water interactions \leftarrow same target as the large water Cherenkov detector
- Low background for $\nu_{\rm e}$ measurement \leftarrow clear verification of sterile neutrino

The nuclear emulsion has all the essential elements for low energy neutrino study.

NINJA Roadmap

NINJA v exposure of NINJA

Since the end of 2014, we started test experiments.

NINJA Results of Detector Run(1)

- 4.0 x 10¹⁹ POT @ Detector run
- Target: 65kg iron → ν-iron int
- Momentum, emission angle and multiplicity of μ , π and p are measured for 183 CC events.

NINJA Results of Detector Run(2)

- 3.5 x 10²⁰ POT @ Detector run
- Target: 65kg iron $\rightarrow \overline{\nu}$ -iron int.
- Momentum, emission angle and multiplicity of μ , π and p are measured for 770 CC events.

Inclusive Cross-section measurement

The results agree well with the MC prediction

Results of Detector Run(2)'

Proton kinematics The results agree well with the MC prediction

NINJA

Pion kinematics Data of charged pion production (backward) is larger than the MC prediction.

NINJA Roadmap

Physics Run (E71a)

- First measurement of v-multi nucleon interactions
- Exclusive cross-section measurement of ν-water interactions

Sandwich structure of the frame type acrylic spacer and emulsion trackers

Detection of low energy protons from v-water int. at Detector Run (T68)

Emulsion Shifter

Tracking efficiency (angle dependence) for one film

Position difference between Moving wall and

4 films are used for a wall of emulsion shifter

Each spot corresponds to the time information.

Scintillation Tracker

The performance (position and angle resolution) of the Scintillation Tracker was as expected.

NINJA Track connection btw ECC and BM

High detection and connection efficiencies have been achieved at each process.

Emulsion scanning and analysis

Proton

Pion

Likelihood ratio

Particle identification

IINJA

INJA **Detected neutrino events**

ECC – Emulsion Shifter – Scintillation Tracker – Baby MIND worked well and succeeded in μ ID and measuring their charge.

Typical Neutrino CC event

- The event pictures (number of protons) in ECC and the µ charge measured by Baby MIND are consistent.
 - To finalized data set, we are checking the muon connections and analysis in ECC, event by event carefully.

Analysis status

Performance check by sub-data set (the central ECC) before opening full dataset

♣NINJA

Analysis status

Detected muons and protons in ν-water int. at ~10% sub-sample

Performance check by sub-data set (the central ECC) before opening full dataset

Future prospect ① : E71b Next Physics Run

Requested POT	10 x 10 ²⁰	ΝΕΛΙΤΠΥΣΙ
E71a	4.8 x 10 ²⁰ E	xposure done → analysis ongoing Plan to be implemented after fall 2023.
E71b	5.2 x 10 ²⁰	Preparation is ongoing.

We have developed an automatic emulsion pouring system and a new higher speed emulsion scanning system in Nagoya U.

ew automatic emulsion scanning system

Automatic emulsion pouring system

NINJA

x10 faster than hand made

x5 faster than current system

Large scale of emulsion facilities allows us to conduct the high statistics experiment.

Refreshable Large size AgBr crystal Nuclear Emulsion

Refreshable → erasing accumulated noise track before beam exposure

Large size crystal

1.0µm

→ optimized for new high speed scanning system

Thicker base Emulsion film \rightarrow Improve angle resolution

(220→340nm)

20

Jun

_

[hep-

2

:2203.11298v

Future prospect (2): D_2O

There is a discussion to further understand v-nucleus interactions, the study of v-nucleon interactions is important.

FERMILAB-CONF-22-149-ND,LA-UR-21-31459

Neutrino Scattering Measurements on Hydrogen and Deuterium: A Snowmass White Paper

Luis Alvarez-Ruso¹, Joshua L. Barrow^{2,3}, Leo Bellantoni⁴, Minerba Betancourt⁴, Alan Bross⁴, Linda Cremonesi⁵, Kirsty Duffy⁶, Steven Dytman⁷, Laura Fields⁸, Tsutomu Fukuda⁹, Diego González-Díaz¹⁰, Mikhail Gorchtein¹¹, Richard J. Hill^{12,4}, Thomas Junk⁴, Dustin Keller¹³, Huey-Wen Lin¹⁴, Xianguo Lu¹⁵, Kendall Mahn¹⁴, Aaron S. Meyer^{16,17}, Tanaz Mohayai⁴, Jorge G. Morfín⁴, Joseph Owens¹⁸, Jonathan Paley⁴, Vishvas Pandey¹⁹, Gil Paz²⁰, Roberto Petti²¹, Ryan Plestid^{12,4}, Bryan Ramson⁴, Brooke Russell¹⁷, Federico Sanchez Nieto²², Oleksandr Tomalak^{12,4,23}, Callum Wilkinson¹⁷, and Clarence Wret²⁴

¹Instituto de Física Corpuscular (IFIC), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valencia (UV), E-46980, Valencia, Spain ²Massachusetts Institute of Technology, Cambridge, MA

arXiv:2203.11298 [hep-ex].

⁶ University of Oxford, Oxford, OX1 3RH, United Kingdom ⁷ University of Pittsburgh, Pittsburgh, PA 15260, USA ⁸ University of Notre Dame, Notre Dame, IN 46556, USA ⁹ IAR/Flab, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601,

Iapan

Development of a bubble chamber is being considered in US.

In NINJA, by introducing a heavy water target, we are developing a method to study ν -nucleon interactions by analyzing the subtraction between a heavy water events and a water events.

24

Snowmass2021 process at US

DPF Community Planning Exercise

Ethics Guidelines

Snowmass Report

Organization

Snowmass Steering Group Snowmass Advisory Group Frontier Conveners APS DPF Snowmass page Snowmass Early Career

Snowmass Frontiers

Energy Frontier Neutrino Physics Frontier

Trace: • start

Welcome to Snow

6

The Snowmass Community Plann COVID-19 pandemic, resumed ful Community Summer Study Works The Particle Physics Community F of Particles and Fields (DPF) of the

of Particles and Fields (DPF) of the provides an opportunity for the e document a scientific vision for th partners. Snowmass will define th identify promising opportunities t Snowmass here **W** "How to Snow Prioritization Panel, will take the s

Search

SNOWMASS NEUTRINO FRONTIER: NEUTRINO INTERACTION CROSS SECTIONS (NF06) TOPICAL GROUP REPORT

SUBMITTED TO THE PROCEEDINGS OF THE US COMMUNITY STUDY ON THE FUTURE OF PARTICLE PHYSICS (SNOWMASS 2021)

5.5	eALB/	Α	12		
Neutrino Scattering Measurements					
6.1	Long-	Baseline Experiment ND capabilities	13		
	6.1.1	T2K-ND	14		
	6.1.2	NOvA-ND	15		
	6.1.3		15		
	6.1.4	HK-ND	16		
6.2	Short-	Baseline Experiment ND capabilities	16		
	6.2.1	MicroBooNE	16		
	6.2.2	ICARUS (NuMI off-axis beamline)	17		
	6.2.3	SBND	17		
6.3	Dedica	ated neutrino scattering programs	18		
	6.3.1	MINERvA	18		
	6.3.2	ANNIE	18		
	6.3.3	NINJA	18		
	6.3.4	H/D bubble chambers	19		
	6.3.5	Far-Forward Neutrinos at the LHC	19		
	6.3.6	nuSTORM	20		
	637	Polarized targets	20		

NINJA Summary

- Precise measurement of neutrino-water interactions is important for future neutrino oscillation analysis (especially, CC2p2h and $\nu_{e}CC$) and proton information is key to improving the neutrino-nucleus interaction model.
- NINJA has introduced nuclear emulsion to study low-energy neutrino interactions for this purpose.
- The results of neutrino and anti neutrino-iron interactions were reported. We found a discrepancy between data and MC in backward pion production.
- The analysis of the physics run (E71a) is ongoing and we will open the full data set, corresponding to 4.8 x 10²⁰ POT near future.
- The next physics run (E71b) is scheduled in JFY2023.
- A new experiment using heavy water ECC is being considered.

New data is being released one after another! We welcome you to join NINJA!

