The LEGEND experiment in a search for neutrinoless double beta decay

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Małgorzata Harańczyk

malgorzata.haranczyk@uj.edu.pl on behalf of the LEGEND collaboration Conference on the Physics of the Two Infinities 27–30 Mar 2023, Kyoto

Double beta decay

- In some of even-even nuclei, beta decay due to energy/ angular momentum balance is forbidden,
- while **double beta** ($2\nu\beta\beta$) **decay** is allowed.
- what if... $0\nu\beta\beta$ decay is possible?

$$2\nu\beta\beta$$
 ⁷⁶Ge→⁷⁶Se+2 e^- +2 $\bar{\nu}_e$ $0\nu\beta\beta$ ⁷⁶Ge→⁷⁶Se+2 e^-

Majorana nature of neutrinos

Lepton number violation

Baryon asymmetry of the Universe

Neutrino mass scale and ordering (normal vs. inverted)

⁷⁶Ge:
$$Q_{\beta\beta} = 2039 \text{ keV}$$

Germanium technology

- Detector is the source
 - excellent detection efficiency
- Semiconductor detectors made from high-purity germanium (HPGe) crystals – low intrinsic background
- Enrichment in ⁷⁶Ge is required (up to 92 %)
- Bare HPGe detectors can be directly immersed in Liquid Ar (coolant and active veto)
- Excellent energy resolution (\sim 2.5 keV at $Q_{\beta\beta}$)

LEGEND concept

Merger of two successful programs:

GERDA (best background, LAr veto) and MAJORANA (low noise, best FWHM, high purity VFE, low threshold) along with several new institutions (presently ~270 members from 52 institutions and 11 countries) to:

design, construct and operate of a ton-scale experiment LEGEND-1000:

PRL 125 (2020) 252502

Phys. Rev. C 100 (2019) 025501

pCDR: arXiv:2107.11462

LEGEND concept

Merger of two successful programs:

GERDA (best background, LAr veto) and MAJORANA (low noise, best FWHM, high purity VFE, low threshold) along with several new institutions (presently ~270 members from 52 institutions and 11 countries) to:

design, construct and operate of a ton-scale experiment LEGEND-1000:

"The collaboration aims to develop a phased, ⁷⁶Ge based double beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results" [pCDR: arXiv:2107.11462]

Energy resolution (FWHM) - Advantage for discovery

 $0\nu\beta\beta$ ⁷⁶Ge → ⁷⁶Se+2 e^- , T_{1/2} exp > 10²⁶ yr

⁷⁶Ge: $Q\beta\beta = 2039 \text{ keV}$

From MAJORANA: Best energy resolution for 0νββ:

2.53 keV (FWHM) at Qββ (with 26 kg·yr of exposure)

[MAJORANA Collab., PRC 100, 025501 (2019)]

Half-life sensitivity - Background issue

T $_{1/2} \sim f \epsilon M t$

Background free

f: ⁷⁶Ge enrichment fraction

 ε : Detection efficiency

M: HPGe mass

t: Measurement time

[M t: Exposure]

Non zero background

 σ_E : Energy resolution at $Q_{\beta\beta}$

B: Background index = counts / (energy · mass · time)

From GERDA: Lowest background level for 0νββ:

Mean background in the Region of Interest: $(Q\beta\beta\pm2\sigma)$ is **0.3 counts** ~ quasi background free!

(with 103.7 kg·yr of exposure)

[GERDA Collab., PRL 125, 252502 (2020)]

LEGEND - quasi background free operation

· less than 1 background event expected in a 4σ ROI for 10 t yr exposure

- $T_{1/2} \sim 10^{28}$ yr less than one decay per year per ton
- 10 [t yr] of data is needed (1 t, 10 yr of data taking) to cover the inverted mass ordering regime
- very good signal-to-background ratio
 - extremely low background level(~20 times lower compared to GERDA)

Our background goal is the red line on the plot (0.025 counts/(FWHM yr).

LEGEND-1000 in a deep underground location

1000 kg of enriched Ge detectors (92% ⁷⁶Ge)

- HPGe detectors: 2.6 kg average mass
- components made from electro-formed Cu and scintillating plastic, PEN
- Strings organized in 4 arrays
- Underground-sourced LAr active shield
- Dual fiber-curtain LAr instrumentation
- 4 EF-Cu Reentrant tubes

3.2023

LEGEND-1000 in a deep underground location

Deep underground – maximal reduction of cosmic muon induced background

- Baseline site: The SNOLAB "Cryopit"
 - ~2 km underground (6000 m.w.e)
 - In an active nickel mine in Sudbury
 - Vertical access through mine shaft
- Alternative site: LNGS (Italy)
 - 3500 m.w.e
 - Lower overburden somewhat increases background (can be tagged and reduced)
 - Horizontal access reduces cost/schedule risk
- Staff at **both sites** are actively involved in planning
- Design slightly varies for different sites

Lock System

Work deck & glove boxes

Isolation valves

Re-entrant tubes (UGLAr)

7m cryostat

12m water tank

15m cavity

LEGEND-200 – initial phase in LNGS

- 200 kg of HP Ge in existing GERDA infrastructure (currently over 140 kg fully installed in LNGS and taking data)
- Anticipated exposure: 1 t yr (5 yr x 200 kg)
- Expected 2.5 keV FWHM resolution
- New type of Inverted Coaxial Point Contact HPGe detectors

Background goal:

3 x reduction w.r.t GERDA, BI < 2 x10⁻⁴ cts/(keV kg yr) ~ 0.6 cts/(FWHM t keV): gives **quasi-background free operation** for discovery of $0\nu\beta\beta$ decay up to 10^{27} yr

- Improved electronics
- Improved Pulse Shape Discrimination methods
- Improved LAr veto

LEGEND-200

Calibration system

Detector array

- ~ 200 kg of detectors distributed over 12 strings
- Reuse of detectors from GERDA and MJD + 140 kg of additional inverted-coaxial
 - point-contact (ICPC) detectors:
 - Active mass > 3 kg
 - **Excellent PSD performance**

PEN (Polyethylene naphthalate) base plate

[graphics credit: Pin-Jung Chiu]

LEGEND – 200 current status

- 140 kg of HPGe installed taking data **now.**
- FWHM ~ 2.8 keV at Qββ achieved. No detector mass dependancy.

BOX: 208Tl DEP (1592.5 keV, SSE signal proxy) and 212Bi FEP (MSE)

LEGEND - 200 current status

LAr veto operational

– 90 tons of purified LAr (argon purity monitored in real time and kept at $\tau_3=1.15~[\mu s]$)

- two curtains of WLS optical fibers

- read out by SiPMs

Muon veto active (water tank full)

Summary

 $0\nu\beta\beta$ decay if observed may solve several fundamental issues in particle physics and cosmology.

- LEGEND collaboration believes in bringing people together
 experience from GERDA and MAJORANA in Germanium technology
- **LEGEND-200** is under commissioning in LNGS, Italy and has already started taking physics data!
 - 5 years of operation, goal: $T_{1/2} \sim 10^{27} \text{ yr}$
- Ton-scale LEGEND-1000 will reach a discovery sensitivity of $T_{1/2} > 10^{28}$ yr, aiming to cover the inverted mass ordering regime

Thank you!

LEGEND – 200 detectors

- P-type detectors: insensitive to alphas on n+ contact
- Small p+ contact: event topology discrimination PSD method
- Large-mass ICPC detectors: ~ ×4 lower backgrounds w.r.t. BEGe/PPC
- Proven long-term stable operation in LAr

BCKG

LEGEND - 200 background reduction

- ββ decay signal:
- localized energy deposition ~ O (1 mm)

 → Single-site event (SSE)
- cosmic μ: water Cherenkov veto
- γ with MeV energies:
 multiple energy depositions ~ O (1 cm)
 - LAr veto,
 - Anti-coincidence from multiple detectors
 - Multi-site event (MSE) in a single detector-
 - Surface α and β

-use of Pulse Shape Discrimination

LEGEND-200 – intermediate step

 200 kg of HP^{enr}Ge in existing GERDA infrastructure at LNGS, Italy (currently over 140 kg fully installed and taking data)

BOX: ²⁰⁸Tl DEP (1592.5 keV, SSE signal proxy) and ²¹²Bi FEP (MSE)