New alignment scheme for KAGRA and future GW detectors

Marc Eisenmann, Matteo Leonardi, Haoyu Wang, Yuhang Zhao

KAGRA detector

- KAGRA is a 2.5-generation gravitational wave detector
 - Similar optical layout and scale as advanced LIGO and Virgo detectors
 - Underground
 - Cryogenic -> crystalline test-masses (ITMx/y, ETMx/y)

- KAGRA test-masses are made of sapphire
 - Imperfect growth caused non-uniform birefringence

 Next generation of gravitational wave detectors will use crystalline test-masses that could also be affected by birefringence

O3GK performances

- Shorter run (O3GK) together with GEO600
 - KAGRA median BNS range ~0.6 MPc
 - KAGRA duty-cycle ~53%
 - Majority of observation time shorter than ~15mn

Performance of the KAGRA detector during the first joint observation with GEO 600 (O3GK)

O3 simulation, S. Haino, JGW-G1910190-v14

'We expect to improve the operational duration once the global angular control system with wavefront sensors is implemented.'

 However, KAGRA high duty-cycle and BNS range will be mandatory to improve events sky localization

Physics of the 2 infinities . March 2023

Sensitivity and observing runs

Schedule as of 2020					
	01	02	O 3	04	• O5
LIGO	80 Мрс	100 Мрс	110-130 Мрс	160-190 Мрс	Target 330 Mpc
Virgo		30 Мрс	50 Мрс	90-120 Мрс	150-260 Мрс
KAGRA			8-25 Мрс	25-130 Мрс	130+ Мрс
LIGO-India	a				Target 330 Mpc
201	5 2016	2017 2018 2	2019 2020 202 [.]	1 2022 2023	2024 2025 2026

Virgo O3a sensitivity

Detection rate $\propto range^3$. duration

- There is a broad variety of 'technical noises' that can drastically affect the detector performances
- Their reduction and characterization is crucial for current and future detectors
- Misalignment(s) is one of the numerous technical noises

Dithering based alignment

- Modulate input beam direction
 - Misaligned : transmitted power modulated at same frequency Aligned : transmitted power modulated at twice this frequency
 - Error signal = transmitted power at modulation frequency
- In KAGRA :
 - modulation applied on heavy suspended mirrors
 - Small bandwidth : easier to lose control
 - Requires permanent beam direction modulation
 - Decreased sensitivity

Wavefront sensing based alignment

- If input beam is aligned with the cavity :
 - Coupling to cavity fundamental mode (U_0)
- If input beam is misaligned with the cavity :
 - Coupling to cavity first higher order mode (U_1)
- Using quadrant photodiode can distinguish between them

- Requires a reference field (generally a sideband from EOM1 : SB_0) to extract this information
 - Does not resonate inside the cavity

Demodulation at Ω_1 : SB_0 . U_1 alignment control signal

Cavity with birefringent mirrors

- Input and end mirrors of the cavity are birefringent :
 - All the beam going through input mirror
 - Both affected by mirror substrate birefringence
- In reflection of the cavity :
 - Interference between directly reflected beam with beam circulating inside the cavity cancels the birefringence effect (Lawrence effect)
- **BUT** the sideband does not circulate inside the cavity :
 - Affected by birefringence
 - Generates sidebands higher-order mode

Wavefront sensing with birefringence

- Input mirror birefringence :
 - Almost no effect on main beam
 - Higher-order modes coupling of sideband (SB_n)
- Distorted reference for the wavefront sensing :
 - Position dependent offset on alignment control signal

Optimal alignment from signal at Ω_1

Best alignment from transmitted power

Birefringence offset

At Ω_1 : SB_0 . $U_1 + SB_n$. U_0

Cavity alignment signal + Birefringence effect

Physics of the 2 infinities . March 2023

A new reference beam

- We propose to use a new external reference beam
 - Does not interact with the cavity
 - No birefringence effect
 - Similar external reference beam used in LIGO and Virgo
 - Monitoring sideband
 - Generate a sideband at a new frequency Ω_2

At Ω_2 : LO_0 . U_1

Cavity alignment signal

At Ω_1 : SB_0 . U_1 + SB_n . U_0 Cavity alignment signal + Birefringence effect

Can also reconstruct the birefringence effect

Reference controls

- Need to insure that the external beam is a good reference to perform wavefront sensing
 - Requires phase control
 - Requires overlap control
- Phase control :
 - To maximize SNR
 - Can be controlled using an additional photodiode and a phase shifter
- Overlap control :
 - To avoid mis-identification (coupling) of alignment
 - Alignment control using 2 dithering mirrors
 - Control from demodulation at dithering freq. of alignment signal
 - Mode-matching :
 - To maximize SNR, avoid coupling
 - High quality telescope
 - Should be stable over time but could be checked with additional cavity

Table-top demonstration at NAOJ

- NAOJ was hosting TAMA300 gravitational wave detector
 - 300m long arm
 - Most sensitive detector in ~2000
 - Operation stopped in 2011
- Currently hosting
 - Frequency-dependent squeezing experiment
 - Absorption/Birefringence mirror characterization
- Several components available
 - Optics at 1064mn and 532 nm
 - Electronics and mechanics
 - Data acquisition system
- Goal:
 - Demonstrate our new alignment signal
 - Confirm our simulations to estimate KAGRA, (ET, CE) coupling

Table-top demonstration status

- Designed a small optical cavity to reproduce KAGRA arm cavity parameter
 - Cavity mirrors will arrive in ~1 month
 - Can not use sapphire as birefringence is too uniform for small sample
 - Custom made birefringent plate to simulate a controlled birefringence of input mirror
- Overall optical scheme ready
 - Most of the components from TAMA300/frequency-dependent squeezing experiment
- Phase control
 - Use same design as frequency-dependent squeezing experiment
- Overlap control
 - Strategy already tested
 - Component available
- Quadrant photodiode
 - Use same design as KAGRA ones

Conclusion

- KAGRA will play a crucial role in gravitational wave and mutli-messenger astronomy
- Current performances and duty-cycle highly affected by test-masses birefringence
 - Might also affect next generation of gravitational wave detectors
- We propose a new alignment scheme using an external reference beam

- The table-top demonstration design is ready
 - Installation to start in April
- If successful we could install it in KAGRA with minimal modifications of the detector and control

