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Cosmic Birefrigence: rotation of polarisation angle of CMB

Correlation between E- and B-modes: window into parity violation mechanism, e.g. Chern-Simons coupling from axion-like 
particles

Focus on spatially constant and time independent cosmic birefringence: isotropic birefringence βb

Hints βb = 0.35°± 0.14° from Planck data  (Minami et al. 2020 & Diego-Palazuelos et al. 2022) based on assumptions about 
foreground EB correlations for calibration.

My goals:

● How and with what precision can we measure βb
● Requirements on calibration
● What is the effect on the measurement of r

Cosmic Birefringence
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Problem 1: Galactic Foregrounds, Dust & Synchrotron
Dust emission: Asymmetric dust grains in the galaxy 
aligned with magnetic fields.

Synchrotron emissions: charged particles accelerated 
along Galactic magnetic fields.

No EB correlation measured yet. But physical 
motivation for it (Clark et al. 2021).
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Problem 2: Polarisation Angle 
Miscalibration 
Miscalibration of telescope polarisation angle leads to the 
same effect on the spectra as isotropic birefringence!

Simons Observatory Small Aperture Telescopes (SAT) 
baseline:

● 3 Small Aperture Telescopes, refractive, 42 cm 
aperture: for large angular scales

● 6 frequency bands from 27 to 280 GHz.
● Atacama desert: high and dry.
● 30 000 detectors.
● 10% of the sky observed 
● Baseline white noise and optimistic 1/f noise from Ade 

et al 2018

We will use SO SAT specifications for testing thanks to high 
polarisation sensitivity and promising calibration methods.
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Several methods are explored for polarisation angle calibration:

● Measurements of the crab nebula (tau A) σ(⍺) ≃ 0.27° Aumont et al. 2020
● Wire-grid σ(⍺) ≲ 1° Bryan et al. 2018
● Drone with polarised source σ(⍺) ≲ 0.1° Nati et al. 2017

Analysis based:

● Self-calibration Keating et al. 2012
● Foreground calibration  

Minami et al . 2020

Polarisation Angle Calibrations
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Map-Based Parametric Component Separation
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Input frequency maps Component maps

noise



Map-Based Parametric Component Separation
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The mixing 
matrix

CMB Dust
Td = 20K, βd

Synchrotron 
βs

The miscalibration 
matrix The birefringence 

matrix



The Generalised Spectral Likelihood
I generalise the spectral log likelihood from Stompor et al. 2009, similarly as 
in Vergès et al. 2020: 

For forecasting purposes we average over CMB and noise realisations.

To lift the degeneracy we add priors to the likelihood:
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Pipeline Summary: A 2 Step Analysis
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Frequency 
maps

Emission laws 
parametrisation 

Calibration 
priors

Mixing 
matrix

Encodes

Ensemble averaged 
spectral likelihood 

sampling

First step

CMB power 
spectra

For each sample of the 
spectral likelihood 
corresponds a power 
spectra

Theoretical CMB 
power spectra

Ensemble averaged 
cosmological 

likelihood sampling

Second step

r and βb 

For each sample of the 
spectral likelihood 
corresponds an estimation 
of r and βb coming from the 
sampling of the 
cosmological likelihood

Jost et al. 2212.08007
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Step 1 : Sampling the 
ensemble averaged 
Spectral likelihood
X{⍺}.A{βfg} 

How to Have a Statistically Robust Method ?
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Step 2 : Draw from 
the ensemble 
averaged 
Cosmological 
likelihood

How to Have a Statistically Robust Method ?



Simple Foregrounds and One Calibration Prior
● Input CMB:  r = 0.0 ; βb = 0.0°
● Input fg: PySM models (Thorne et 

al 2016, Zonca et al. 2021) d0s0:
○ dust: MBB, spatially constant spectral 

indices
○ synchrotron: power law, spatially 

constant spectral indices

● 1 prior on 93 GHz: σ(⍺i) = 0.1°

Foreground cleaning is ok

Miscalibration: one prior enough
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Simple Foregrounds and Six Calibration Priors
● Input CMB:  r = 0.0 ; βb = 0.0°
● Input fg: PySM models (Thorne et 

al 2016, Zonca et al. 2021) d0s0:
○ dust: MBB, spatially constant spectral 

indices
○ synchrotron: power law, spatially 

constant spectral indices

● Prior on all frequency channels: σ
(⍺i) = 0.1°

Overall σ(⍺) improved wrt priors 
precisions! 14
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● Simple foregrounds: d0s0
● Prior on all frequency channels

r and βb correctly estimated

σ(r): same order as SO SAT forecast with σ
(r) = 2.1 10-3 (Ade et al. 2018)

σ(βb): improved wrt prior precision!
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Simple Foregrounds and Six Calibration Priors



● Simple foregrounds: d0s0
● Prior on all frequency channels
● r = 0.01, βb = 0.35°

For SO SAT if σ(⍺i)=0.1° ⇒ 5σ detection of 
βb = 0.35° 
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Simple Foregrounds and Six Calibration Priors



Foreground emissions don’t follow the 
assumption used in the mixing matrix:

● d1s1: spatially varying foreground 
spectral indices

● d7s3: dust emission is non parametric 
and synchrotron has a curvature term

● Prior on all frequency channels: σ(⍺i) = 0.1°

r: biased due to foreground residuals

βb: no noticeable effect 
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Complex Foregrounds and Six Calibration Priors



● Simple foregrounds d0s0:
○ dust: MBB, isotropic spectral indices
○ synchrotron: power law, isotropic spectral indices

● Prior on all channels, σ(⍺i) = 1°
● Priors randomly biased by N(0,1°)

βb biased by the same value as ⍺i

For βb trade-off between statistical uncertainty and 
possible bias.

r is unbiased: we marginalise over a global angle, 
removing any E→B leakage either from ⍺i or βb

We can always be confident that r is not affected 
by ⍺i  and βb .
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Results: Simple Foregrounds and Six Calibration Priors
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Evolution of Uncertainty wrt Prior Precision
We can set calibration requirement.

● Simple Foregrounds: d0s0
● 3 cases:

○ 1 prior
○ 6 priors 
○ 6 priors and no noise  

Noise represents ~42% of σ(βb) in SO 
SATs 



LiteBIRD space mission:

● Simple Foregrounds: d0s0
● 49% sky observed PTEP 2022
● Noise levels from PTEP 2022
● 22 frequency channels
● lmin =2; lmax= 125
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Results: Evolution of Uncertainty wrt Prior Precision



Conclusion and Future Prospects
● Estimating βb  and ⍺i  doesn’t significantly impact r measurements wrt standard 

parametric component separation
● Birefringence can be efficiently constrained using calibration priors in a 

multifrequency observation, provided no pathological bias on priors
● We can set requirements on calibration prior precisions :

Prospects:

● Pipeline development: 
○ realistic priors from wire grid and drone
○ observation matrices

● Studying the impact of other effects: bandpasses, gain, HWP systematics etc
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THANK YOU !

Source : Deborah Kellner
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Polarisation Power Spectra
primordial B-modes spectrum parameter: r 

r constraints r < 0.032 (95 C.L.) (Tristram et al. 
2021)

E and B modes are also affected by other 
non-primordial effects:

● Contribution from Sunyaev-Zel’dovich 
● Gravitational lensing converts E to B
● Birefringence 

And contaminants:

● Instrumental Effects
● Galactic Foregrounds 
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Cosmic Birefringence
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I focus in particular on spatially constant and time independent cosmic birefringence:

Hints βb = 0.35°± 0.14° from Planck data  (Minami et al. 2020 & Diego-Palazuelos et al. 2022) based on 
assumptions about foreground EB correlations for calibration.

My goals:

● How and with what precision can we measure βb
● Requirements on calibration
● What is the effect on the measurement of r



The Cosmological Likelihood

With {βfg  } and {𝛂i  } we estimate a CMB map. Imperfect component separation 
will lead to residuals. 

Its power spectra is used to estimate cosmological parameters:
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Data after generalised 
component separation



Method Validation
SO SAT characteristics noise, 10% sky coverage, lmin = 30, lmax =300,      
30 000 detectors, first light by the end of the year

Priors: 

● as a benchmark we use σ(⍺i) = 0.1°
● Unless precised otherwise, priors are centred at the true value of 

polarisation angles.
● Different calibration methodology explored e.g.  one vs multiple 

priors.

Forecast input sky:

● average over CMB maps generated from Planck power spectra 
with r = 0.0, βb = 0.0°

● PySM foreground maps with different degrees of complexity 
(d0s0, d1s1, d7s3 in order of complexity…) (Thorne et al 2016, 
Zonca et al. 2021)
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Foreground Models
Dust template: maps at 545 GHz in intensity 
and 353 GHz in polarisation from the 2015 
Commander Planck+WMAP+Haslam 408 MHz 
(Plank 2016) 

d1, spectral index map from commander 
(assumes same spectral index for 
temperature and polarisation)

d7 Hensley and Draine 2012 + Hensley 2015: 
Emission modeled after dust size, shape 
temperature and ferromagnetic iron inclusion 
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Synchrotron template: 23 GHz map from 
WMAP 9 yr (Bennett et al. 2013)

s1, Miville-Deschênes et al. (2008): 
combination of WMAP (Hinshaw et al. 2007) 
and Haslam 408 MHz data (Haslam et al. 
1982)

s3, global curvature index C = -0.052 (Kogut et 
al 2012)



● d0s0
● Prior on all frequency channels

σ(βb): improved wrt prior precision!
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Results: Simple Foregrounds and Six Calibration Priors



● Back to simple foregrounds d0s0:
○ dust: MBB, spatially constant spectral 

indices
○ synchrotron: power law, spatially 

constant spectral indices
● Prior on all channels, σ(⍺i) = 1°
● Priors randomly biased by N(0,1°)

⍺i biased by the same value: the mean 
of the biases
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Results: Simple Foregrounds and Biased Priors


