Alleviating the H_0 and σ_8 tensions via general conformal coupling between dark energy and dark matter

Stharporn Sapa

Northern College, Thailand

International Conference on the Physics of the Two Infinities

Kyoto, Japan

27 – 30 Mar, 2023

Based on PRD:105.063527

arXiv:2201.03261 [gr-qc]

Topic

- 1. H_0 and σ_8 tensions
- 2. General conformal transformation
- 3. Background universe
- 4. Perturbation
- 5. Conclusion

1. H_0 and σ_8 tensions

- $ightharpoonup H_0$ is the Hubble expansion rate at present
- ▶ From CMB data (based on Λ CDM), $H_0 = 67.27 \mathrm{km \ s^{-1} Mpc^{-1}}$ 1
- ► From local measurments, $H_0 = 73 \text{km s}^{-1} \text{Mpc}^{-1 2}$

¹P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016).

²A. G. Riess et al, arXiv: 2112.04510 [astro-ph.CO]

1. H_0 and σ_8 tensions

- $ightharpoonup \sigma_8$ is the amplitude of matter density perturbation
- ▶ From CMB data (based on Λ CDM), $\sigma_8 = 0.83^3$
- From local measurments, $\sigma_8 = 0.76$ ⁴

³H. Hildebrandt et al., Mon. Not. R. Astron. Soc. 465, 1454(2017)

⁴C. Heymans et al. A&A 646, A140 (2021)

- ▶ One of the possible model to alleviate H_0 and σ_8 tensions is conformal coupling model between dark energy and dark matter
- ▶ This work we use general conformal transformation ⁵

$$\bar{g}_{\mu\nu} = C(\phi, X)g_{\mu\nu} \tag{1}$$

➤ To study the coupling between dark energy and dark matter, we write the action as

$$S = \int d^4x \left[\sqrt{-g} \left(\frac{R}{2} + P(\phi, X) + \mathcal{L}_{\mathcal{M}}(g_{\mu\nu}) \right) + \sqrt{-\bar{g}} \mathcal{L}_c(\bar{g}_{\mu\nu}, \psi) \right]$$
 (2)

where we have set $1/\sqrt{8\pi G} = 1$,

R is the Ricci scalar,

$$P(\phi, X) \equiv X - V(\phi),$$

 $\mathcal{L}_{\mathcal{M}}$ is the Lagrangian of ordinary matter,

 \mathcal{L}_c is the Lagrangian of dark matter,

 ψ is the matter field

Varying eq.(2) with respect to the metric tensor $g_{\mu\nu}$, we obtain Einstein field equation as

$$\nabla_{\mu}G^{\mu\nu} = 8\pi G \nabla_{\mu}T_{t}^{\mu\nu} = 8\pi G \nabla_{\mu}(T_{c}^{\mu\nu} + T_{\phi}^{\mu\nu}) = 0.$$
 (3)

where

$$T_{\phi}^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}P(\phi, X))}{\delta g_{\mu\nu}},\tag{4}$$

$$T_c^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-\bar{g}}\bar{\mathcal{L}}_c)}{\delta g_{\mu\nu}} \tag{5}$$

▶ Varying the action eq. (2) with respect to scalar field ϕ , we obtain the EOM for scalar field ϕ as

$$\nabla_{\alpha}\nabla^{\alpha}\phi - V_{,\phi} = -\Gamma T_c - \nabla_{\beta}(\Xi\phi^{,\beta}T_c) \equiv -Q \tag{6}$$

where $\Gamma \equiv C_{,\phi}/[2(C+C_{,X}X)]$ and $\Xi \equiv C_{,X}/[2(C+C_{,X}X)]$

▶ Multiplying eq. (6) by $\phi_{,\beta}$, we obtain

$$\nabla_{\alpha} T^{\alpha}_{\beta(\phi)} = -\nabla_{\alpha} T^{\alpha}_{\beta(c)} = -Q\phi_{,\beta}. \tag{7}$$

3. Background universe

For the background universe, we use the line element,

$$ds^2 = -a^2 d\tau^2 + a^2 \delta_{ij} dx^i dx^i.$$
 (8)

From eqs.(6) and (7), we obtain

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = Q_0, \tag{9}$$

$$\dot{\rho}_c + 3H\rho_c = -Q_0\dot{\phi},\tag{10}$$

$$\dot{\rho}_b = -3H\rho_b,\tag{11}$$

$$\dot{\rho}_r = -4H\rho_r. \tag{12}$$

$$Q_0 = \frac{\Theta V_{,\phi} + 3H\Theta\dot{\phi} - 2X\Xi_{,\phi} + \Gamma}{\rho_c\Theta - 2X\Xi - 1}.$$
 (13)

where $\Theta \equiv \Xi + 2X\Xi_{,X}$

3. Background universe: A. Autonomous equations

Let us compute the autonomous equations by defining the dimensionless dynamical variables as

$$x = \frac{\dot{\phi}}{\sqrt{6}H}, \qquad y = \frac{V}{3H^2}, \qquad \Omega_c = \frac{\rho_c}{3H^2}, \tag{14}$$

$$\Omega_b = \frac{\rho_b}{3H^2}, \qquad \Omega_r = \frac{\rho_r}{3H^2}. \tag{15}$$

We also define the dimensionless functions as

$$z = \frac{C_X}{C}H^2, \qquad \lambda = \frac{V_{,\phi}}{V}, \tag{16}$$

$$\gamma = \Gamma, \qquad \chi = \Xi H^2. \tag{17}$$

3. Background universe: A. Autonomous equations

To perform the dynamical analysis, we choose the potential of scalar field and conformal coefficient ${\cal C}$ as

$$V(\phi) = V_0 e^{\lambda \phi}, \qquad C(\phi, X) = C_0 e^{\lambda_1 \phi} \left[1 + e^{\lambda_2 \phi} \left(\frac{X}{V_0} \right)^{\lambda_3} \right], \qquad (18)$$

where $C_0, \lambda_1, \lambda_2, \lambda_3$ are dimensionless constants.

1. Field dominated point and scaling point Setting $x^\prime=y^\prime=0$, we obtain two fixed points as

$$x_f = \left\{ -\frac{\lambda}{\sqrt{6}}, \frac{\sqrt{6}(2\lambda_3 + 1)}{B} \right\},\tag{19}$$

$$y_f = \left\{1 - \frac{\lambda^2}{6}, 1 + \frac{6(2\lambda_3 + 1)^2}{B^2} + \frac{2\lambda(2\lambda_3 + 1)}{B}\right\},\tag{20}$$

$$\Omega_c f = \left\{ 1, 1 + \frac{6(2\lambda_3 + 1)^2}{B^2} + \frac{2\lambda(2\lambda_3 + 1)}{B} \right\},\tag{21}$$

$$\omega_{\phi f} = \left\{ \frac{1}{3} (\lambda^2 - 3), -\frac{\lambda_1 + \lambda_2 + \lambda \lambda_3}{B \left(\frac{12(2\lambda_3 + 1)^2}{B^2} + \frac{2\lambda(2\lambda_3 + 1)}{B} + 1 \right)},$$
(22)

where $B = \lambda_1 + \lambda_2 - \lambda(3\lambda_3 + 2)$.

We write λ, λ_1 and λ_2 in term of $\Omega_{\phi f}$ and $\omega_{\phi f}$: Then, for scaling point, we obtain

$$x_f = \pm \sqrt{\frac{1}{2}\Omega_{\phi f}(1 + \omega_{\phi f})}$$
 and $y_f = \frac{1}{2}\Omega_{\phi f}(1 + \omega_{\phi f})$ (23)

2. Kinetic dominated point and ϕ MDE point

$$x_f^{(\mathrm{kinetic})} = \pm 1,$$
 (24)

$$x_f^{(\phi \text{MDE})} = -\frac{\lambda_1 + \lambda_2}{\sqrt{6}(3\lambda_3 + 2)} \mp \frac{\sqrt{\lambda_1^2 + 2\lambda_2\lambda_1 + \lambda_2^2 + 6\lambda_3(3\lambda_3 + 2)}}{\sqrt{6}(3\lambda_3 + 2)}$$
(25)

Inserting $x_f^{(\phi \text{MDE})}$ into the definition of Ω_{ϕ} , we get

$$\Omega_{\phi f}^{(\phi \text{MDE})} = \left[1, 1, \frac{(\lambda_1 + \lambda_2 \pm \sqrt{\lambda_1^2 + 2\lambda_2\lambda_1 + \lambda_2^2 + \lambda_2^2 + 6\lambda_3(3\lambda_3 + 2)})^2}{6(3\lambda_3 + 2)^2} \right]$$
(26)

- ▶ Since y = 0 at these fixed point, then we get $\omega_{\phi f}^{(\phi \text{MDE})} = 1$.
- This give the effective equation of state parameter $w_{\rm eff}=\Omega_\phi\omega_\phi=\Omega_{\phi f}^{(\phi{\rm MDE})}$ is slightly positive during the $\phi{\rm MDE}$ epoch

► Field dominated point

The eigenvalues for this case are

$$\mu_1 = 3\lambda_3(1 + \omega_{\phi f}) + \lambda_2 \sqrt{3(1 + \omega_{\phi f})},$$
(27)

$$\mu_2 = -\frac{3}{2}(1 - \omega_{\phi f}),\tag{28}$$

$$\mu_3 = \frac{\lambda_3(9\omega_{\phi f} - 3) + +\omega_{\phi f} - (\lambda_1 + \lambda_2)\sqrt{3(1 + \omega_{\phi f})}}{4\lambda_3 + 2} \tag{29}$$

The field dominated point is stable point when the following conditions are satisfied

$$\lambda_3 < -\frac{\lambda_2}{\sqrt{3\lambda_1}} \tag{30}$$

$$\lambda_{1} \begin{cases}
< -\frac{2\omega_{\phi f}(2\sqrt{3}\lambda_{2} - 3\sqrt{1 + \omega_{\phi f}})}{\sqrt{3}(1 + \omega_{\phi f})} & \text{for } \lambda_{3} < -1/2 \\
> -\frac{2\omega_{\phi f}(2\sqrt{3}\lambda_{2} - 3\sqrt{1 + \omega_{\phi f}})}{\sqrt{3}(1 + \omega_{\phi f})} & \text{for } \lambda_{3} > -1/2
\end{cases}$$
(31)

Scaling point

The eigenvalues for this case are

$$\mu_1 = 3\lambda_3(1 + \omega_{\phi f}\Omega_{\phi f}) \mp \lambda_2 \sqrt{3\Omega_{\phi f}(1 + \omega_{\phi f}\Omega_{\phi f})}, \tag{32}$$

$$\mu_2 = -\frac{3}{4}(1 - \omega_{\phi f}\Omega_{\phi f}) + 3\sqrt{\frac{r_a}{r_b}},\tag{33}$$

$$\mu_3 = -\frac{3}{4}(1 - \omega_{\phi f}\Omega_{\phi f}) - 3\sqrt{\frac{r_a}{r_b}},\tag{34}$$

where

$$r_{a} = \lambda_{3} \left[w_{\phi f}^{2} \left(2w_{\phi f} + 1 \right) \Omega_{\phi f}^{3} + \left(-3w_{\phi f}^{2} - 18w_{\phi f} + 16 \right) \Omega_{\phi f}^{2} \right.$$
$$\left. + \left(16w_{\phi f} - 15 \right) \Omega_{\phi f} + 1 \right] + \Omega_{\phi f} \left[w_{\phi f}^{2} \left(w_{\phi f} + 1 \right) \Omega_{\phi f}^{2} \right.$$
$$\left. - 2 \left(w_{\phi f}^{2} + 5w_{\phi f} - 4 \right) \Omega_{\phi f} + 9w_{\phi f} - 7 \right], \tag{35}$$

$$r_b = 16 \left(\lambda_3 \Omega_{\phi f} + 2\lambda_3 w_{\phi f} \Omega_{\phi f} + w_{\phi f} \Omega_{\phi f} + \Omega_{\phi f} + \lambda_3 \right). \tag{36}$$

The first eigenvalue can be negative when

$$\lambda_3 < \pm \frac{\lambda_2 \sqrt{3\Omega_{\phi f}(1 + \omega_{\phi f})}}{3(1 + \omega_{\phi f}\Omega_{\phi f})}.$$
 (37)

The real part of both μ_2 and μ_3 can be negative when $r_a=0$, these give

$$\lambda_{3a} = -\frac{\Omega_{\phi f} [\omega_{\phi f}^2 \Omega_{\phi f}^2 (1 + \omega_{\phi f}) - 2(\omega_{\phi f}^2 + 5\omega_{\phi f} - 4)\Omega_{\phi f} + 9\omega_{\phi f} - 7]}{\omega_{\phi f}^2 \Omega_{\phi f}^3 (1 + 2\omega_{\phi f}) + \Omega_{\phi f}^2 K + (16\omega_{\phi f} - 15)\Omega_{\phi f} + 1}$$
(38)

$$\lambda_{3b} = -\frac{\Omega_{\phi f}(1 + \omega_{\phi f})}{2\omega_{\phi f}\Omega_{\phi f} + \Omega_{\phi f} + 1}$$

$$K = -3\omega_{\phi f}^2 - 18\omega_{\phi f} + 16$$
(39)

The scaling point can be stable when $\lambda_3 < \lambda_{3a}$ or $\lambda_3 > \lambda_{3b}$

► Kinetic dominated point

For this point $x_f = \pm 1$, the eigenvalues are

$$\mu_1 = \frac{3(\lambda_3 + 1)}{2\lambda_3 + 1} \pm \frac{\sqrt{6}(\lambda_1 + \lambda_2)}{4\lambda_3 + 2},\tag{40}$$

$$\mu_2 = 6\lambda_3 \mp \sqrt{6}\lambda_2,$$
 and $\mu_3 = 6 \pm \sqrt{6}\lambda.$ (41)

- \blacktriangleright For ϕ MDE point, the eigenvalues of this point are complicated
- ightharpoonup We are interested in the case where ϕMDE is followed by accelerating epoch described by scaling point

3. Background universe: D. Evolution from the $\phi {\rm MDE}$ to scaling point

We set $\lambda_2 = 1, \omega_{\phi f} = -0.99$ and $\Omega_{\phi f} = 0.7$.

3. Background universe: D. Evolution from the $\phi {\rm MDE}$ to scaling point

The evolution of Ω_r, Ω_{dm} and Ω_{ϕ} for $\lambda_3 = -3/2$

3. Background universe: D. Evolution from the $\phi {\rm MDE}$ to scaling point

▶ The evolution of ω_{ϕ}

4. Perturbation

In order to compute the evolution of perturbation, we use Newtonian gauge

$$ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(1-2\Psi)\delta_{ij}dx^{i}dx^{j}.$$
 (42)

We obtain the evolution of density and velocity perturbation as

$$\dot{\delta}_c - 3\dot{\Psi} - (\frac{k^2}{a})v_c = \dot{\phi}\tilde{Q}_0\delta_c - \dot{\phi}\frac{\delta Q}{\rho_c} - \tilde{Q}_0\delta\dot{\phi},\tag{43}$$

$$\dot{v}_c + (H - \dot{\phi}\tilde{Q}_0)v_c + \frac{1}{a}\Psi = \frac{\tilde{Q}_0}{a}\delta\phi \tag{44}$$

4. Perturbation

Differentiating eq.(43) wrt. time, we obtain

$$\delta_c'' + C_1 \delta_c' - \frac{3}{2} (G_{cc} \Omega_c \delta_c + G_{cb} \Omega_b \delta_b) = 0, \tag{45}$$

where C_1,G_{cc} and G_{cb} are the functions of x,y,z,Ω_b,Ω_c and parameters of model.

▶ The effective gravitational coupling depends on G_{cc} .

4. Perturbation

- ► The evolution of δ_c/a . For lines I and II, $(\lambda_3, \Omega_{\phi f}, \omega_{\phi f}) = (1/2, 0.96, -0.9)$ and (-3/2, 0.99, -0.99).
- ▶ The line III is the usual conformal coupling case (z=0) with $(\lambda,\lambda_1)=(-1/10,-2/10)$.
- ▶ The line IV represents Λ CDM model.

5. Conclusion

- ▶ The background universe can evolve from the radiation era to ϕ MDE and toward the accelerated expansion era at late time
- ▶ The existence of ϕ MDE modifies the evolution of the universe, then the H_0 tension can be solved
- ► The growth of the linear matter perturbation is weaker than Λ CDM, such that the σ_8 tension can be alleviated

Thank you!