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1. Hy and oy tensions

» Hj is the Hubble expansion rate at present
> From CMB data (based on ACDM), Hy = 67.27km s~ *Mpc ™' !

» From local measurments, Hy = 73km s_lMpc_1 2

1P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016).
2A. G. Riess et al, arXiv: 2112.04510 [astro-ph.CO]



1. Hy and oy tensions

» g is the amplitude of matter density perturbation
» From CMB data (based on ACDM), o3 = 0.83 3

» From local measurments, og = 0.76 *

3H. Hildebrandt et al., Mon. Not. R. Astron. Soc. 465, 1454(2017)
4C. Heymans et al. A&A 646, A140 (2021)



2. General conformal transformation

» One of the possible model to alleviate Hy and og tensions is
conformal coupling model between dark energy and dark matter

» This work we use general conformal transformation °
Juv = C((ﬁ,X)g,“, (1)

5V. Faraoni, E. Gunzig, P. Nardone, Fund. Cosmic Phys.-20:121, 1999



2. General conformal transformation

» To study the coupling between dark energy and dark matter, we
write the action as

s = [ dta[v=3(5 + Po.X) + Lutlgw)) +VILAg V)] ()

where we have set 1/v/87G =1,

R is the Ricci scalar,
P(6,X) = X — V()

L is the Lagrangian of ordinary matter,
L. is the Lagrangian of dark matter,

1 is the matter field



2. General conformal transformation

» Varying eq.(2) with respect to the metric tensor g, we obtain
Einstein field equation as

VuG* = 8nGV T = 8nGV (T +Th") = 0. (3)
where
6(v/—gP(p, X
p — 2 SVZ9P(0. X)) @
V=g 59#1/

v =9 69#1/



2. General conformal transformation

» Varying the action eq. (2) with respect to scalar field ¢, we obtain
the EOM for scalar field ¢ as

VaV% — V4 = -IT, — Vs(2¢PT.) = —Q (6)

whereI' = C 4 /[2(C+ C xX)]and E=C x /[2(C + C x X)]
> Multiplying eq. (6) by ¢ 3, we obtain

VaT§(¢) = —vaTﬁa(c) = _be,ﬁ- (7)



3. Background universe

For the background universe, we use the line element,
ds®> = —a?dr? + a25ijd:1cidxi.
From egs.(6) and (7), we obtain
¢ +3HO+ V4 = Qu,
pe +3Hpe = —Qod,

py = —3H py,
jr = —4Hp,.

o 0.0 —2XE— 1

where © = E+2XZ= x

_ OV4+3HO¢ — 2XE 4+ T



3. Background universe: A. Autonomous equations

Let us compute the autonomous equations by defining the dimensionless

dynamical variables as

x:i y:L QO = Pe
V6H' 3H?’ ° 3HY
Pb Pr

Q= 2 Q, = )

b7 3g? 3H2

We also define the dimensionless functions as

Cx ..o Vi
=——"H A= 22
Tt v’
v=T, x =ZH?

(16)
(17)



3. Background universe: A. Autonomous equations

To perform the dynamical analysis, we choose the potential of scalar field
and conformal coefficient C' as

V(g) = Voe?, C(¢,X) = CoeM?[1 + ew(é)*’}, (18)
0

where Cy, A1, A2, A3 are dimensionless constants.



3. Background universe: B. Fixed points

1. Field dominated point and scaling point
Setting ' = ¢y’ = 0, we obtain two fixed points as

b= i\/6(2A3+1)}7

- -
A2 6(2X3 + 1) 2X(2X\3+ 1)
yf_{l_F’H B2 B }
B 6(2A3 +1)2  2X(2A3+ 1)
R R
1 AL+ A2+ A3
Wo = {g()\2 —-3),—

B(12(2232+1)2 n 2,\(2;\33+1) i 1) )

where B = \{ + Ay — )\(3)\3 + 2).



3. Background universe: B. Fixed points

We write A, A1 and Ay in term of Qyf and wgy:
Then, for scaling point, we obtain

: 1
vy = A g twey) and gy =oQs(1+wsy)  (23)



3. Background universe: B. Fixed points

2. Kinetic dominated point and MDE point

x;kinetic) _ :|:1, (24)

LMD _ Mt VAZE 2000 + A2+ 6X3(3)3 + 2)
p _

V6(3\3 +2) i V6(3\3 +2) (25)




3. Background universe: B. Fixed points

Inserting :cS?MDE) into the definition of {24, we get

Q(¢MDE) _ [1 1 (/\1 + )\2 + \/)\% + 2)\2)\1 + )\% + /\% + 6)\3(3/\3 + 2))2}
¢f Y 6(3\3 + 2)2
(26)

($MDE) _

» Since y = 0 at these fixed point, then we get W 1.

» This give the effective equation of state parameter

Weff = Qpwy = Q;Q}MDE) is slightly positive during the ®MDE epoch



3. Background universe: C. Stability

» Field dominated point

The eigenvalues for this case are

i1 = 3a(L 4 wap) + day/3(1+ wgp), (27)

3

po = =5 (1= w), (28)
A3 9wy — 3 — (M +2)/30

i = 230wor = 3) F Hwsr = (M 4 A2) 3L+ wyy) (29)

4hg + 2



3. Background universe: C. Stability

The field dominated point is stable point when the following conditions
are satisfied

A2

A3 < — 30

VBN (30)
< _ 200y (@V3Ra—3y/1twey) for A3 < -—1/2

A V3(1+wey) 3 (31)

2we 7 (2V3A2—=31/1+wey)
> — NEGET) for Az > —1/2




3. Background universe: C. Stability

» Scaling point
The eigenvalues for this case are

= 3A3(1 + worQop) F A2 \/3Q¢f(1 +warQsr), (32)
3 Ta

ph2 = —1(1 —werQsr) + 34—, (33)
Vo7
3 Ta

ps == (L= werQop) =34/, (34)
T

where
ra = As[wdy (2wgy +1) Q% + (~3wd; — 18wy +16) 0,
+ (16w¢f — 15) Q¢f + 1} + Q¢f [wif (w¢f + 1) Qif
=2 (why + 5wy — 4) Qg+ 9wgy —7) (35)
r, = 16 (/\39¢f +2X3we Qg + W Qs + Qo + A3) - (36)



3. Background universe: C. Stability

The first eigenvalue can be negative when

Aor/3Q0 1 (1
Ay < 422V 7 ( +W¢f)_

3(1 +werQer)

(37)

The real part of both s and ps can be negative when r, = 0, these give

_Q¢f[‘”3>f93$f(1 + W¢f) — 2(wif + dwer — 4)Q¢f + Ywer — 7]
wg (14 2wy p) + Q7 K + (16wgr — 15)Qg5 + 1
(38)

)\3(1 =

Qpr(1 + woy)
2LU¢fQ¢f + Q¢f +1

K = —3w}; — 18wyy + 16

Agp = — (39)

The scaling point can be stable when A3 < A3, or A3 > Agp



3. Background universe: C. Stability

» Kinetic dominated point

For this point xy = %1, the eigenvalues are

B(As +1) V6(A1 + A2)
23 +1 4)3 + 2 ’
fia = 6X3 F V62, and

H1 =

3 =6+ V6.



3. Background universe: C. Stability

» For pMDE point, the eigenvalues of this point are complicated

» We are interested in the case where pMDE is followed by
accelerating epoch described by scaling point



3. Background universe: D. Evolution from the pMDE to
scaling point

104

1+Z
We set Ay = 1,wgy = —0.99 and Q4 = 0.7.



3. Background universe: D. Evolution from the pMDE to
scaling point
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z+1
The evolution of Q,., Q4 and Qg for A3 = —3/2



3. Background universe: D. Evolution from the pMDE to
scaling point

» The evolution of wy
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4. Perturbation

In order to compute the evolution of perturbation, we use Newtonian

gauge o
ds® = —(1+2W)dt* + a*(1 — 2W)8;dz"da? . (42)

We obtain the evolution of density and velocity perturbation as

. . 2 . o~ . ~ .

bo =30 = (o = 0Qus. — 622 - Quis, (#3)
. = 1 Qo
Ve + (H — ¢Qo)ve + g‘I’ = 75¢ (44)



4. Perturbation

Differentiating eq.(43) wrt. time, we obtain
8! + Ch6. — g(GCCQC(Sc + Gep0p) =0, (45)

where C1, G, and G are the functions of x,y, z, Qp, Q. and parameters
of model.

» The effective gravitational coupling depends on G..



4. Perturbation

» The evolution of d./a. For lines | and I,
(As, oz wep) = (1/2,0.96,—0.9) and (—3/2,0.99, —0.99).
» The line lll is the usual conformal coupling case (z = 0) with
(A A1) = (=1/10,—2/10) .
» The line IV represents ACDM model.



5. Conclusion

» The background universe can evolve from the radiation era to
¢®MDE and toward the accelerated expansion era at late time

» The existence of MDE modifies the evolution of the universe, then
the Hj tension can be solved

» The growth of the linear matter perturbation is weaker than ACDM,
such that the og tension can be alleviated



Thank you!



