Exploration of the Symmetry in Particle Physics with an Accelerator Neutrino Beam

T. Nakaya (Kyoto) for the AO2 group

2023.3.29 @ Two infinities

Exploration of Particle Physics and Cosmology with Neutrinos 2018.7~2023.3 (A01-04, B01-02, C01-02)

Introduction

- Neutrino mass and mixing (right handed neutrinos) are physics beyond the standard model.
- · Tiny Neutrino mass
 - \cdot What is the origin of the mass?
- · Flavor Symmetry
 - Between leptons and quarks
 - · mass pattern
 - · mixing pattern
 - \cdot the number of generations
- CP violation

•

- \cdot the origin?
- matter dominant universe with
 Leptogenesis

Credit: J-PARC

Goals of this Grant-in-Aid project

Study of symmetries in neutrino oscillations

- θ_{23} precisions better than 5%
- CP violation (δ_{CP}) with 99% CL for the maximum CPV
- [J-PARC] Handling of the higher beam power with development of new beam monitors (16 electrodes BPM)
 - 5×10^{21} POT will be accumulated for high statistics
- ② [NINJA] Better understanding of neutrino interactions
 - 10% precision for neutrino cross sections
- ③ [T2K] Improvements of oscillation measurements
 - θ_{23} precisions better than 5%
 - CP violation (δ_{CP}) with 99% CL for the maximum CPV

T2K and NINJA presentations

- T2K results today at 14:30 by. Dr. Tatsuya KIKAWA
 - Recent results and future prospects from the T₂K experiment
- NINJA results today at 17:45 by Dr. Tsutomu FUKUDA
 - Precise measurement of Neutrino Interactions at J-PARC in the NINJA experiment

NINJA physics analysis started

Press release in October 20, 2020

精密測定により素粒子ニュートリノの謎の解明を目指す NINJA 実験の物理解析が開始!

J-PARC Accelerator and Neutrino beam

by Dr. Aine Kobayashi @ Exploration of Particle Physics and Cosmology with Neutrino work shop 2022

23 Jan 2010 – 27 Apr 2021 POT Total: 3.82 × 10²¹ (maximum power 522.6 kW)

 ν -mode: 2.17 × 10²¹ (56.8%) $\bar{\nu}$ -mode: 1.65 × 10²¹ (43.2%)

Neutrino Cross-section results from NINJA

Iron target results

Water target results are coming!

 Measurement of charged hadrons from muon neutrino interactions on iron.

a Exploration of Particle Physics and Cosmology with Neutrino work shop 2022

Latest Oscillation results from T2K

Best fit in the upper \$\theta_{23}\$ octant, but lower octant still allowed at the \$1\$\sigma\$ level
 CP-conserving values of \$\delta=0\$ and \$\delta=\$\pi\$ outside of \$90% CL intervals

Using θ_{13} constraint from reactor experiments: $\sin^2(2\theta_{13}) = 0.0861 \pm 0.0027$

by Dr. Christophe Bronner @ Exploration of Particle Physics and Cosmology with Neutrino work shop 2022

Achievements

(1) [J-PARC] We accumulated 3.8×10^{21} POT before 2021.

- Goal: 5 x 10²¹ POT will be accumulated for high statistics
- [NINJA] Cross section results with Iron target. Results with Water target are coming (1/9 data has been shown).
 - Goal: 10% precision for neutrino cross sections
- ③ [T2K] New results released at Neutrino 2022.
 - Goal: θ_{23} precisions better than 5%
 - Goal: CP violation (δ_{CP}) with 99% CL for the maximum CPV

Prospect and Summary

- J-PARC is now ready to provide the high beam power of 700~800 kW.
- Full data of water targets in NINJA are on process, and will be released soon.
- Oscillation analysis in T2K is improved.

• It becomes more exciting to take and analyze neutrino beam data in T2K and NINJA. Stay tuned!

Backup

Latest Oscillation results from T2K

Table 35: Feldman-Cousins confidence intervals for $\sin^2 \theta_{23}$.

Confidence level	Interval (NH)	Interval (IH)
1σ	$[0.460, 0.491] \cup [0.526, 0.578]$	
90%	[0.444, 0.589]	[0.525, 0.582]
2σ	[0.437, 0.594]	[0.459, 0.588]

Table 34: Feldman-Cousins confidence intervals for $\delta_{\rm CP}$.

3

 δ_{CP}

Confidence level	Interval (NH)	Interval (IH)
1σ	[-2.76, -1.03]	
90%	[-3.08, -0.52]	[-1.92, -0.89]
2σ	$[-\pi, -0.29] \cup [3.04, \pi]$	[-2.22, -0.66]
3σ	$[-\pi, 0.31] \cup [2.59, \pi]$	[-2.80, -0.14]

