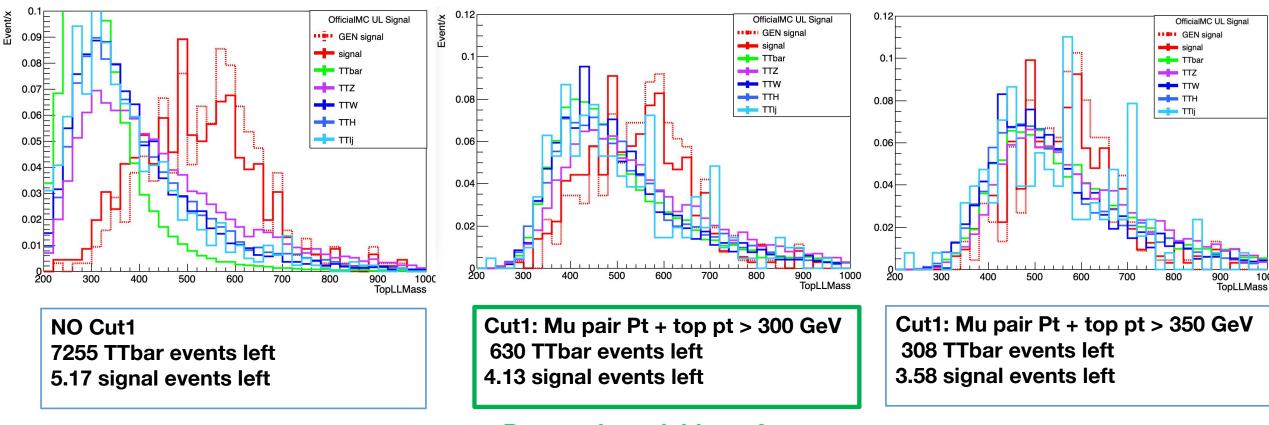
Update from Last Meeting

- > Add T T->lepton+jet background MC sample
 - cross section: 364351 fb-1
 - Most are removed by basic cuts
 - 14.7 events left after all cuts
- > Remove overlap jets
 - Remove these jets: min(dR(jet, mu)) < 0.4
- > Check analysis code and found a typo
 - Related to T' transverse mass calculation
 - Keep checking
- > Trying to find a good main variable
 - Stacked plots are on the way...
 - Thinking about loosen the pt cut a little bit

The following cuts are basic cuts:

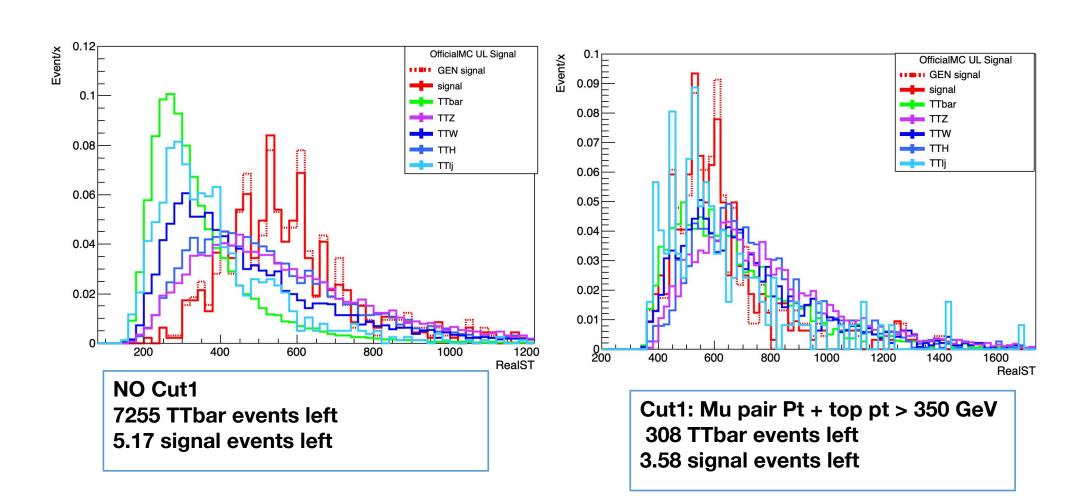
- For Muons
 - Two opposite sign muons
 - Pt > 20GeV
 - |eta| < 2.4
 - Tight Muon ID: Muon_tightId
 - Tight isolation: goodMuons_miniPFRellso_all < 0.05
 - Significance cut: Muon_sip3d < 3
- For jets
 - Tight jet ID: Jet_jetId= 6
 - Pt > 30GeV
 - |eta| < 2.5
 - At least 3 good jets
 - At least 1 Loose B jet(goodJets_btagDeepFlavB>0.049)
 - Cut0: Mu pair mass < 60GeV
 - · Cut1: Top reconstruction is valid
 - Cut2: Mu pair Pt + top pt > 350 GeV
 - Cut3: Minimal delta R (mu, b jet from top) > 2
 - Cut4: delta R (b jet from top, W from top) < 2.5

Remove overlapped jets

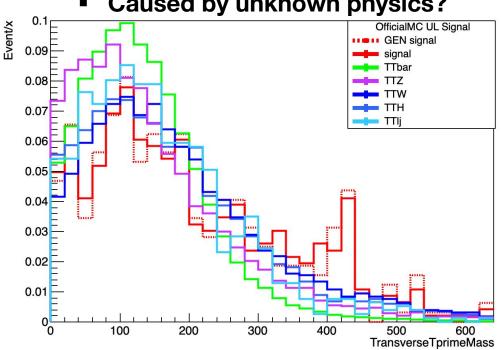

- > Remove overlapped jets
 - Overlapped jets: min(dR(jet, mu)) < 0.4
 - Function is added at the beginning of the analysis code
- > Jets number in each process decrease
- > Events number in each process decrease then increase
 - decrease before cut1: the number of jets is reduced
 - increase after cut1: Removing overlap jets increase the quality of top reconstruction

$$\frac{N_{jets}(remove overlap) - N_{jets}(with overlap)}{N_{jets}(with overlap)}$$

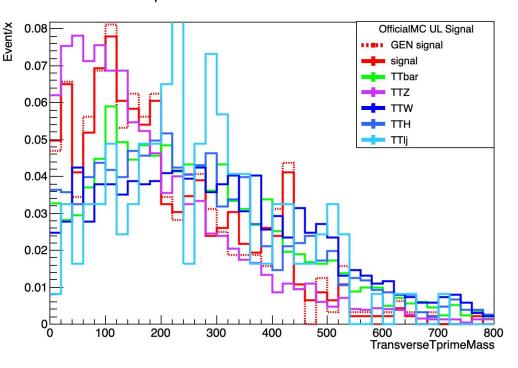
Cuts	N(jets)_Signal	N(jets)_TT	N(jets)_TTJetLepton	N(jets)_TTW	N(jets)_TTZ	N(jets)_TTH
Basic cuts	-6.6%	-6.2%	-17.0%	-5.9%	-5.1%	-7.3%
Basic cuts&& Cuts01234	-3.0%	-5.6%	-10.7%	-5.3%	-3.85%	-5.2%


Cuts	N_Signal	N_GENSignal	N_TT	N_TTJetLepton	N_TTW	N_TTZ	N_TTH	
Basic cuts	-10%	-5.75%	-20.0%				_ \	
Basic cuts&& Cuts01	+1.3%	+0.9%	-4.54%	-2.4% $\frac{N_{ever}}{}$	$_{nts}(rem_{i})$			$N_{events}(with overlap)$
Basic cuts&& Cuts01234	+3.4%	+1.3%	+9.8%	+0.8%		N_{event}	$_{s}(with \epsilon$	overlap)

- > After basic cut, cut0, *cut1*, cut2, cut3 &cut4:
 - (top candidate + lepton pair).M() looks like a good main variable
 - Maybe need to loosen cut1 (Mu pair Pt + top pt > 350 GeV)

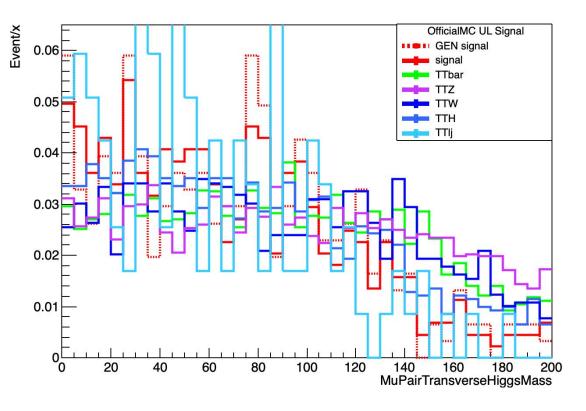

Best main variable so far

- > After basic cut, cut0, *cut1*, cut2, cut3 &cut4:
 - ST is scalar sum of all jets and muons in 1 event
 - worse than (top+II).M()



- > After basic cut, cut0, *cut1*, cut2, cut3 &cut4:
- > Still weird
 - Other bugs in the code?
 - **MET_Pt** cannot be used directly?

Caused by unknown physics?


$$m_T^{T'} = \sqrt{2 * p_T^{ll\⊤} * p_T^{MET} * [1 - \cos(\delta\phi(\overrightarrow{p_T^{ll\⊤}}, \overrightarrow{p_T^{MET}}))]}$$

Cut1: Mu pair Pt + top pt > 350 GeV 308 TTbar events left 3.58 signal events left

- > After basic cut, cut0, *cut1*, cut2, cut3 &cut4:
 - Make more sense than transverse T' mass

$$m_T^H = \sqrt{2 * p_T^{ll} * p_T^{MET} * [1 - \cos(\delta\phi(\overrightarrow{p_T^{ll}}, \overrightarrow{p_T^{MET}}))]}$$

