Tuesday 08.11.2022

nils.science@gmail.com

European Research Council Established by the European Commission

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

BAO+BBN REVISITED

TOPICS

- Quick motivation
- The BAO principle
- The BBN principle
- Why do BAO+BBN combine so well?
- What aids this probe?
- What breaks this probe?

TOPICS

- Quick motivation
- The BAO principle
- The BBN principle
- Why do BAO+BBN combine so well?
- What aids this probe?
- What breaks this probe?

THE CMB

Slide 4/120

nils.science@gmail.com

THE CMB

Slide 5/120

nils.science@gmail.com

THE CMB

Slide 6/120

nils.science@gmail.com

THE CMB

Slide 7/120

nils.science@gmail.com

THE CMB

Slide 8/120

nils.science@gmail.com

THE CMB

Slide 9/120

nils.science@gmail.com

THE CMB

nils.science@gmail.com

THE CMB

Slide 11/120

nils.science@gmail.com

THE CMB

Slide 12/120

nils.science@gmail.com

THE CMB

Slide 13/120

nils.science@gmail.com

THE CMB

Slide 14/120

nils.science@gmail.com

THE CMB

Slide 15/120

nils.science@gmail.com

THE CMB

Slide 16/120

nils.science@gmail.com

THE CMB

Slide 17/120

nils.science@gmail.com

THE CMB

Slide 18/120

nils.science@gmail.com

THE CMB

Slide 19/120

nils.science@gmail.com

THE CMB

Slide 20/120

nils.science@gmail.com

THE CMB

Slide 21/120

nils.science@gmail.com

THE CMB

Slide 22/120

nils.science@gmail.com

THE CMB

Slide 23/120

nils.science@gmail.com

THE CMB

Slide 24/120

nils.science@gmail.com

THE CMB

Slide 25/120

nils.science@gmail.com

THE CMB

Slide 26/120

The CMB

Slide 27/120

nils.science@gmail.com

The CMB

Slide 28/120

nils.science@gmail.com

Slide 29/120

nils.science@gmail.com

THE CMB

 \mathbf{z}_{eq} $\mathbf{\Omega}_{\mathbf{\Lambda}}$ $\mathbf{\theta}_{s}$ \mathbf{R} $\mathbf{\theta}_{d}$ \mathbf{A}_{s} \mathbf{n}_{s} $\mathbf{\overline{\tau}}_{reio}$

nils.science@gmail.com

THE CMB

 $\mathbf{Z_{eq}}$ Ω_{Λ} θ_{s} \mathbf{R} θ_{d}

 $\mathbf{A}_{\mathbf{s}}$

 $\mathbf{n}_{\mathbf{s}}$

Primordial information + Reionization τ_{reio}

Slide 31/120

nils.science@gmail.com

THE CMB

Slide 32/120

nils.science@gmail.com

THE CMB

Slide 33/120

nils.science@gmail.com

The CMB

Slide 34/120

nils.science@gmail.com

The CMB

Slide 35/120

Slide 36/120
nils.science@gmail.com

Slide 37/120

nils.science@gmail.com

THE HUBBLE TENSION

Slide 38/120

nils.science@gmail.com

THE HUBBLE TENSION

Slide 39/120

nils.science@gmail.com

THE HUBBLE TENSION

Slide 40/120

Alternative Probes of Hubble

Slide 41/120

Alternative Probes of Hubble

Slide 42/120

nils.science@gmail.com

Alternative Probes of Hubble

Slide 43/120

Alternative Probes of Hubble

• CMB similar

Slide 44/120

Alternative Probes of Hubble

Slide 45/120

Nils Schöneberg

Alternative Probes of Hubble

- CMB similar
- Distance ladder consistent (up to CCHP TRGB)
- Other standard candles agree

Slide 46/120

Nils Schöneberg

Alternative Probes of Hubble

- CMB similar
- Distance ladder consistent (up to CCHP TRGB)
- Other standard candles agree
- Strong lensing disputed, but points high Hubble

Slide 47/120

Nils Schöneberg

Alternative Probes of Hubble

- CMB similar
- Distance ladder consistent (up to CCHP TRGB)
- Other standard candles agree
- Strong lensing disputed, but points high Hubble
- GW not yet enough precision

Slide 48/120

Nils Schöneberg

Alternative Probes of Hubble

art 40 /19

Slide 49/120

TOPICS

- Quick motivation
- The BAO principle
- The BBN principle
- Why do BAO+BBN combine so well?
- What aids this probe?
- What breaks this probe?

BAO and the sound horizon

GENERAL IDEA:

1) BAO determines Ω_m and $H_0 r_s$

Slide 51/120

BAO AND THE SOUND HORIZON

GENERAL IDEA:

1) BAO determines Ω_m and $H_0 r_s$

$$\Delta z \approx \frac{hr_s}{1/E(z)} \quad \Delta \vartheta \approx \frac{hr_s}{\int_0^z E(z') \mathrm{d}z'}$$

BAO AND THE SOUND HORIZON

Slide 53/120

BAO AND THE SOUND HORIZON

Slide 54/120

nils.science@gmail.com

GENERAL IDEA:

1) BAO determines $\Omega_{\rm m}$ and $H_0~r_{\rm s}$

Slide 55/120

nils.science@gmail.com

BAO + BBN

GENERAL IDEA:

1) BAO determines Ω_m and $H_0 \ r_s$

Slide 56/120

nils.science@gmail.com

BAO + BBN

GENERAL IDEA:

1) BAO determines Ω_m and $H_0 r_s$

$$\begin{aligned} \mathbf{T}_{0}\,,\,\mathbf{\Omega}_{\mathrm{b}}\,\mathbf{h}^{2}\\ H_{0}r_{s} &= \int_{z_{\mathrm{rec}}}^{\infty}\frac{c_{s}(z)\mathrm{d}z}{H(z)/H_{0}}\\ \mathbf{\Omega}_{\mathrm{m}}\,,\,\mathbf{\Omega}_{\mathrm{r}}\,\mathbf{h}^{2},\,\mathbf{H}_{0} \end{aligned}$$

Slide 57/120

nils.science@gmail.com

BAO + BBN

Slide 58/120

nils.science@gmail.com

BAO + BBN

GENERAL IDEA:

1) BAO determines Ω_m and $H_0 r_s$

$$H_0 r_s = \int_{z_{
m rec}}^{\infty} rac{c_s(z) {
m d} z}{H(z)/H_0}$$
 $\Omega_{
m m}, \Omega_{
m r} {
m h}^2, {
m H}_0$

Slide 59/120

nils.science@gmail.com

BAO + BBN

Slide 60/120

nils.science@gmail.com

BAO + BBN

GENERAL IDEA:

1) BAO determines Ω_m and $H_0 r_s$

$$H_0 r_s = \int_{z_{
m rec}}^{\infty} rac{c_s(z) {
m d} z}{H(z)/H_0}$$
 $\Omega_{
m m}, \Omega_{
m r} {
m h}^2, {
m H}_0$

Slide 61/120

nils.science@gmail.com

BAO + BBN

GENERAL IDEA:

1) BAO determines Ω_m and $H_0 r_s$

$$H_0 r_s = \int_{z_{\rm rec}}^{\infty} \frac{c_s(z) dz}{H(z)/H_0}$$
$$\Omega_{\rm m}, \Omega_{\rm r} h^2, H_0$$

Slide 62/120

TOPICS

- Quick motivation
- The BAO principle
- The BBN principle
- Why do BAO+BBN combine so well?
- What aids this probe?
- What breaks this probe?

nils.science@gmail.com

The BBN part

Slide 64/120

nils.science@gmail.com

The BBN part

Slide 65/120

The BBN part

More baryons \rightarrow earlier decoupling \rightarrow higher temperature \rightarrow more deuterium burning \rightarrow Less deuterium (+more Helium)

Slide 66/120

nils.science@gmail.com

The BBN part

Slide 67/120

The BBN part

Slide 68/120

The BBN part

Early weak decay: Sensitive to H(z), N_{eff} Produces $He4 = Y_p$ <u>Late fusion reaction:</u> Sensitive to $\Omega_b h^2$ Produces $H2 = D_H$

Slide 69/120

nils.science@gmail.com

The BBN part

Slide 70/120

The BBN part

Early weak decay: Sensitive to $\mathbf{H}(\boldsymbol{z})$, \mathbf{N}_{eff} Produces $\text{He4} = \mathbf{Y}_{p}$ Late fusion reaction: Sensitive to $\boldsymbol{\Omega}_{b}\mathbf{h}^{2}$

Produces $H2 = D_H$

Slide 71/120

nils.science@gmail.com

The BBN part

Slide 72/120
TOPICS

- Quick motivation
- The BAO principle
- The BBN principle
- Why do BAO+BBN combine so well?
- What aids this probe?
- What breaks this probe?

nils.science@gmail.com

BAO + BBN

GENERAL IDEA:

1) BAO determines $\Omega_{\rm m}$ and $H_0~r_{\rm s}$

2) BBN determines $\Omega_b h^2$

$$egin{aligned} \mathbf{T}_0, \mathbf{\Omega}_\mathrm{b} \, \mathbf{h}^2 \ \mathbf{H}_0 r_s &= \int_{z_\mathrm{rec}}^\infty rac{c_s(z) \mathrm{d}z}{H(z)/H_0} \ \mathbf{\Omega}_\mathrm{m\prime}, \, \mathbf{\Omega}_\mathrm{r} \, \mathbf{h}^2, \, \mathbf{H}_0 \end{aligned}$$

Slide 74/120

nils.science@gmail.com

BAO + BBN

GENERAL IDEA:

1) BAO determines $\Omega_{\rm m}$ and $H_0~r_{\rm s}$

2) BBN determines $\Omega_b h^2$

$$T_0, \Omega_b h^2$$
 $H_0 r_s = \int_{z_{
m rec}}^{\infty} rac{c_s(z) {
m d} z}{H(z)/H_0}$
 $\Omega_{
m m/}, \Omega_r h^2, H_0$

Slide 75/120

nils.science@gmail.com

BAO + BBN

GENERAL IDEA:

1) BAO determines Ω_m and $H_0 r_s$

2) BBN determines $\Omega_b h^2$

3) Their combination relates directly ${\rm H}_0 \ r_{\rm s} \to {\rm H}_0$

Slide 76/120

nils.science@gmail.com

BAO + BBN

GENERAL IDEA:

1) BAO determines Ω_m and $H_0~r_{\rm s}$

2) BBN determines $\Omega_b h^2$

3) Their combination relates directly ${\rm H}_0 \ r_{\rm s} \to {\rm H}_0$

Slide 77/120

nils.science@gmail.com

BAO + BBN

GENERAL IDEA:

1) BAO determines Ω_m and $H_0 r_s$

2) BBN determines $\Omega_b h^2$

3) Their combination relates directly ${\rm H}_0 \ r_{\rm s} \to {\rm H}_0$

Different $z \rightarrow$ We measure H₀

Slide 78/120

nils.science@gmail.com

BAO + BBN

GENERAL IDEA:

1) BAO determines Ω_m and $H_0~r_{\rm s}$

2) BBN determines $\Omega_b h^2$

3) Their combination relates directly ${\rm H}_0 \ r_{\rm s} \to {\rm H}_0$

Different $z \rightarrow$ We measure H₀

Slide 79/120

nils.science@gmail.com

Slide 80/120

nils.science@gmail.com

Slide 81/120

nils.science@gmail.com

arXiv:1907.11594 \rightarrow JCAP 10 (2019) 029 Nils Schöneberg, Julien Lesgourgues, Deanna C. Hooper

Slide 82/120

Slide 83/120

$D \land \cap D D N$

Picture from late 2019

What changed?

Slide 84/120

$D \wedge \cap D D M$

Picture from late 2019

What changed?

 \rightarrow New BBN results from LUNA experiment

Slide 85/120

$D \wedge \cap D D M$

Picture from late 2019

What changed?

 \rightarrow New BBN results from LUNA experiment

 \rightarrow New BAO from DR16

Slide 86/120

$D \wedge \cap D D M$

Picture from late 2019

What changed?

 \rightarrow New BBN results from LUNA experiment

 \rightarrow New BAO from DR16

20% tighter constraints now!

nils.science@gmail.com

87/120

Slide

arXiv:1907.11594 \rightarrow JCAP 10 (2019) 029 Nils Schöneberg, Julien Lesgourgues, Deanna C. Hooper

nils.science@gmail.com

88/120

Slide

arXiv:1907.11594 \rightarrow JCAP 10 (2019) 029 Nils Schöneberg, Julien Lesgourgues, Deanna C. Hooper

89/120

Slide

arXiv:2209.14330 \rightarrow Accepted in JCAP Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

90/120

Slide

arXiv:2209.14330 \rightarrow Accepted in JCAP Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

Slide 91/120

Possible Questions

- Why did constraint increase? BBN or BAO?
- Why better agreement of contours?

arXiv:2209.14330 \rightarrow Accepted in JCAP Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

TOPICS

- Quick motivation
- The BAO principle
- The BBN principle
- Why do BAO+BBN combine so well?
- What aids this probe?
- What breaks this probe?

Slide 93/120

Slide 94/120

Combining BAO+BBN

arXiv:2209.14330 \rightarrow Accepted in JCAP Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

Slide 95/120

Combining BAO+BBN

arXiv:2209.14330 \rightarrow Accepted in JCAP Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

Combining BAO+BBN

Slope at k=0.03h/Mpc

Effects:

- Radiation-Matter equality $\Omega_{\rm m}h^2 \rightarrow z_{\rm eq} \rightarrow k_{\rm eq} \rightarrow P(k)$ turn
- Baryon suppression $\Omega_{
 m b}{
 m h}^2/\Omega_{
 m m}{
 m h}^2
 ightarrow f_b
 ightarrow {
 m P(k)} {
 m dip}$

96/120

Slide

- Overall slope $n_s \rightarrow P(k)$ tilt

COMBINING BAO+BBN

Slope at k=0.03h/Mpc

Effects:

- Radiation-Matter equality $\Omega_{\rm m} {\rm h}^2 \rightarrow z_{\rm eq} \rightarrow k_{\rm eq} \rightarrow {\rm P}({\rm k})$ turn

97/120

Slide

- Overall slope $n_s \rightarrow P(k)$ tilt

COMBINING BAO+BBN

Slope at k=0.03h/Mpc

Effects:

- Radiation-Matter equality $\Omega_{\rm m}h^2 \rightarrow z_{\rm eq} \rightarrow k_{\rm eq} \rightarrow {\rm P(k)}$ turn

98/120

Slide

- Overall slope $\mathbf{k} \rightarrow \mathbf{P}(\mathbf{k})$ tilt

COMBINING BAO+BBN

ShapeFit measures $\Omega_{\rm m}h^2$

Slope at k=0.03h/Mpc

Effects:

- Radiation-Matter equality $\Omega_{\rm m}h^2 \rightarrow z_{\rm eq} \rightarrow k_{\rm eq} \rightarrow {\rm P(k)}$ turn

99/120

Slide

- Overall slope $\mathbf{M} \rightarrow \mathbf{P}(\mathbf{k})$ tilt

Combining BAO+BBN

arXiv:2209.14330 \rightarrow Accepted in JCAP Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

Slide 100/120

nils.science@gmail.com

Combining BAO+BBN

Uncalibrated supernovae Measure $H_0D_L(z) = (1+z) \int_0^z \frac{dx}{\sqrt{\Omega_m[(1+x)^3 - 1] + 1}}$ $\rightarrow \Omega_m$ BAO+BBN (Pantheon) (67.8 ± 0.7) km/s/Mpc SH0ES (2022): 4.4 σ (73.2 ± 1.0) km/s/Mpc

arXiv:2209.14330 \rightarrow Accepted in JCAP Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

Slide 101/120

nils.science@gmail.com

Combining BAO+BBN

Uncalibrated supernovae Measure $H_0 D_L(z) = (1+z) \int_0^z \frac{dx}{\sqrt{\Omega_m[(1+x)^3 - 1] + 1}}$ $\rightarrow \Omega_m$

BAO+BBN (PantheonPLUS) $(68.3 \pm 0.9) \text{ km/s/Mpc}$

arXiv:2209.14330 \rightarrow Accepted in JCAP Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

Slide 102/120

nils.science@gmail.com

Combining BAO+BBN

arXiv:2209.14330 \rightarrow Accepted in JCAP Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

Slide 103/120

nils.science@gmail.com

Combining BAO+BBN

arXiv:2209.14330 \rightarrow Accepted in JCAP Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

Slide 104/120

Combining BAO+BBN

arXiv:2209.14330 \rightarrow Accepted in JCAP Nils Schöneberg, Licia Verde, Hector Gil-Marín, Samuel Brieden

Slide 105/120

TOPICS

- Quick motivation
- The BAO principle
- The BBN principle
- Why do BAO+BBN combine so well?
- What aids this probe?
- What breaks this probe?

Slide 106/120

nils.science@gmail.com

arXiv:1907.11594 \rightarrow JCAP 10 (2019) 029 Nils Schöneberg, Julien Lesgourgues, Deanna C. Hooper

Slide 107/120

nils.science@gmail.com

arXiv:1907.11594 \rightarrow JCAP 10 (2019) 029 Nils Schöneberg, Julien Lesgourgues, Deanna C. Hooper

Slide 108/120
nils.science@gmail.com

arXiv:1907.11594 \rightarrow JCAP 10 (2019) 029 Nils Schöneberg, Julien Lesgourgues, Deanna C. Hooper

Slide 109/120

nils.science@gmail.com

BAO + BBN

Slide 110/120

nils.science@gmail.com

Slide 111/120

nils.science@gmail.com

Slide 112/120

nils.science@gmail.com

Slide 113/120

nils.science@gmail.com

Slide 114/120

• BAO+BBN most precise non-CMB probe

- BAO+BBN most precise non-CMB probe
- BBN calibrates $r_{\rm s}$ and thus disentangles $H_0 r_{\rm s}$

Conclusions

- BAO+BBN most precise non-CMB probe
- BBN calibrates $r_{\rm s}$ and thus disentangles $H_0 r_{\rm s}$
- Updated data (LUNA, DR16) gives tighter H_0

Conclusions

- BAO+BBN most precise non-CMB probe
- BBN calibrates $r_{\rm s}$ and thus disentangles $H_0 r_{\rm s}$
- Updated data (LUNA, DR16) gives tighter H_0
- Combination with SF $\rightarrow 68.3 \pm 0.7 \mathrm{km/s/Mpc}$ (4.0 σ)

- BAO+BBN most precise non-CMB probe
- BBN calibrates $r_{\rm s}$ and thus disentangles $H_0 r_{\rm s}$
- Updated data (LUNA, DR16) gives tighter H_0
- Combination with SF $\rightarrow 68.3 {\pm} 0.7 {\rm km/s/Mpc}~(4.0 \sigma)$
- Combination with $\theta_s \rightarrow 68.2 \pm 0.5 \mathrm{km/s/Mpc}~(4.5\sigma)$

- BAO+BBN most precise non-CMB probe
- BBN calibrates $r_{\rm s}$ and thus disentangles $H_0 r_{\rm s}$
- Updated data (LUNA, DR16) gives tighter H_0
- Combination with SF $\rightarrow 68.3 {\pm} 0.7 {\rm km/s/Mpc}~(4.0 \sigma)$
- Combination with $\theta_s \to 68.2 \pm 0.5 {\rm km/s/Mpc}~(4.5\sigma)$
- Model dependence if $r_{\rm s}$ modified without BBN